Direct photon production at low transverse momentum in proton-proton collisions at $\mathbf{\sqrt{s}=2.76}$ and 8 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024912, 2019.
Inspire Record 1664312 DOI 10.17182/hepdata.88395

Measurements of inclusive and direct photon production at mid-rapidity in pp collisions at $\sqrt{s}=2.76$ and 8 TeV are presented by the ALICE experiment at the LHC. The results are reported in transverse momentum ranges of $0.4<p_{T}<10$ GeV/$c$ and $0.3<p_{T}<16$ GeV/$c$, respectively. Photons are detected with the electromagnetic calorimeter~(EMCal) and via reconstruction of e$^+$e$^-$ pairs from conversions in the ALICE detector material using the central tracking system. For the final measurement of the inclusive photon spectra the results are combined in the overlapping $p_{T}$ interval of both methods. Direct photon spectra, or their upper limits at 90% C.L. are extracted using the direct photon excess ratio $R_{\gamma}$, which quantifies the ratio of inclusive photons over decay photons generated with a decay-photon simulation. An additional hybrid method, combining photons reconstructed from conversions with those identified in the EMCal, is used for the combination of the direct photon excess ratio $R_{\gamma}$, as well as the extraction of direct photon spectra or their upper limits. While no significant signal of direct photons is seen over the full $p_{T}$ range, $R_{\gamma}$ for $p_{T}>7$ GeV/$c$ is at least one $\sigma$ above unity and consistent with expectations from next-to-leading order pQCD calculations.

10 data tables

Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 2.76 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.

Double Ratio RGAMMA in inelastic pp collisions at center-of-mass energy 8 TeV. RGAMMA is the ratio of inclusive GAMMA to decay GAMMA.

Invariant differential cross section of inclusive GAMMA produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of $\sigma_{MB}$ of 2.5% is not included in the systematic error. Values are given in the center of the PT bin.

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

Production of $\pi^0$ and $\eta$ mesons up to high transverse momentum in pp collisions at 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 339, 2017.
Inspire Record 1512110 DOI 10.17182/hepdata.77976

The invariant differential cross sections for inclusive $\pi^{0}$ and $\eta$ mesons at midrapidity were measured in pp collisions at $\sqrt{s}=2.76$ TeV for transverse momenta $0.4<p_{\rm T}<40$ GeV/$c$ and $0.6<p_{\rm T}<20$ GeV/$c$, respectively, using the ALICE detector. This large range in $p_{\rm T}$ was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-$p_{\rm T}$ neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. The measured cross sections are found to exhibit a similar power-law behavior with an exponent of about $6.3$. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about $30$% for the $\pi^0$, and between $30$-$50$% for the $\eta$ meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than $10$-$30$%, except at $p_{\rm T}<1$ GeV/$c$. The new data can therefore be used to further improve the theoretical description of $\pi^{0}$ and $\eta$ meson production.

5 data tables

Invariant differential yields of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the normalization uncertainties of 5.7% are not included in the systematic error.

Invariant differential yields of $\eta$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the normalization uncertainties of 5.7% are not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of $\sigma_{MB}$ of 2.5% is not included in the systematic error.

More…