Charged Multiplicity of Hadronic Events Containing Heavy Quark Jets

Rowson, P.C. ; Trilling, G. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 54 (1985) 2580-2583, 1985.
Inspire Record 212819 DOI 10.17182/hepdata.20380

The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.

7 data tables
More…

Charged Particle and Neutral Kaon Production in e+ e- Annihilation at PETRA

The JADE collaboration Bartel, W. ; Becker, L. ; Bawbery, C. ; et al.
Z.Phys.C 20 (1983) 187, 1983.
Inspire Record 190818 DOI 10.17182/hepdata.16288

None

5 data tables

MEAN CHARGED MULTIPLICITY.

MEAN CHARGED MULTIPLICITY AFTER SUBTRACTING SECONDARIES FROM KS AND LAMBDA DECAY, PLUS LEPTONS FROM HEAVY QUARK WEAK DECAYS ARE FROM DALITZ DECAYS. I.E. NUMBER OF CHARGED HADRONS HAVING LIFETIME > 10**-9 SEC.

INVERSE RELATIVE DISPERSION.

More…

Multiplicity Distributions in e+ e- Annihilations at PETRA Energies

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 95 (1980) 313-317, 1980.
Inspire Record 154270 DOI 10.17182/hepdata.27160

Measurements of the charged multiplicities for hadron production in e + e − annihilation in the center of mass energy range 9–32 GeV have been made. The average charged multiplicity has an energy dependence much stronger than ln s and similar to that reported for pp collisions. Quantitative differences are observed in the magnitude of both the average multiplicity 〈 n ch 〉 and the dispersion D ch for e + e − and pp interactions at the same center of mass energy. 〈 n ch 〉 and the ratio 〈 n ch / D ch in e + e − annihilations are significantly larger than in pp collisions and are found to be in overall agreement with QCD predictions. KNO scaling is seen to be satisfied.

1 data table

THE FINAL TABLE ENTRY COMBINES THE DATA FROM THE THREE HIGHEST ENERGY BINS.