Proton-Proton Collisions at 4.2 Bev

Blue, M.H. ; Lord, J.J. ; Parks, J.G. ; et al.
Phys.Rev. 125 (1962) 1386-1393, 1962.
Inspire Record 944984 DOI 10.17182/hepdata.26806

Interactions between 4.15-Bev protons and the free hydrogen nuclei in nuclear emulsion are examined. The total elastic cross section from 27 events was determined to be 11.0±2.6 mb. On the basis of 113 interactions the total inelastic cross section was found to be 28.1±3.1 mb. The partial cross sections corresponding to inelastic collisions having two, four, six, and eight secondary particles were found to be respectively 16.3±2.4, 11.5±1.8, 0.2±0.1, and 0.1±0.1 mb. While the total inelastic cross section varies slowly with energy, the partial inelastic cross sections were found to be strongly energy dependent. The observed angular distribution of elastically scattered protons in the center-of-mass system was sharply peaked in the forward and backward directions, in fair agreement with calculations based on a simple optical model applicable for energies between 2 and 10 Bev. Particles produced in inelastic collisions were identified as pions or protons by measurements of energy loss and multiple scattering. For those particles identified, center-of-mass system distributions of energy, angle, and transverse momentum are presented.

0 data tables match query

Proton-proton collisions at 3.5 GeV

Piserchio, R.J. ; Kalbach, R.M. ;
Nuovo Cim. 26 (1962) 729-739, 1962.
Inspire Record 1185010 DOI 10.17182/hepdata.37708

Ilford G-5 emulsions were exposed to an external, 3.5 GeY proton beam of the Berkeley Bevatron. A total of 1200 nuclear interactions of beam protons was located, of which 128 were identified as protonproton collisions. Multiple scattering, blob density, range and angle measurements were employed to determine the cross-sections for elastic and inelastic interactions as well as the identities and center-of-mass system momenta and scattering angles of secondaries from inelastic proton-proton interactions. This analysis indicates a cross-section of (8.0±2.4) mb for elastic events, (24.1±2.9) mb for two-prong inelasitc events, (7.9±1.4)mb for four-prong events and (0.6±0.3) mb for sixprong events. The mean charged pion multiplicity in inelastic interactions is 1.5±0.2 and corresponds to an average degree of inelasticity of 0.45 ±0.06. Center-of-mass system angular distributions of charged secondaries from inelastic events display a peaking for small scattering angles which is most pronounced for protons and pions from events with low secondary multiplicity. Momentum and transverse momentum distributions of secondary protons and pions from inelastic events are presented and compared with the results at other energies. The angular distribution of elastically scattered protons is found to be in fair agreement with that predicted by a uniform optical model of radius 1.25-10-13 cm and opacity 0.66.

0 data tables match query