Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

Measurement of Feynman-$x$ Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 74 (2014) 2915, 2014.
Inspire Record 1288065 DOI 10.17182/hepdata.64481

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6<Q^2<100$ GeV$^2$, of inelasticity $0.05<y<0.6$ and of $70<W<245 $GeV. To test the Feynman scaling hypothesis the $W$ dependence of the $x_F$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

4 data tables

The fraction of DIS events with forward photons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

The fraction of DIS events with forward neutrons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

Normalised cross sections of forward photon production in DIS as a function of XF. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

More…

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2406, 2013.
Inspire Record 1217865 DOI 10.17182/hepdata.62615

Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5<Q (2)<100 GeV(2), and small values of Bjorken-x, 10(−4)<x<10(−2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (η (∗)) and transverse momentum ( ) in the range 0<η (∗)<5 and in bins of x and Q (2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

36 data tables

Charged particle density as a function of pseudorapidity for the PT range 0-1 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT range 1-10 GeV in the HCM frame.

Charged particle density as a function of pseudorapidity for the PT interval 0-1 GeV in fixed Q**2 and X intervals in the HCM frame.

More…

Jet Production in ep Collisions at High Q^2 and Determination of alpha_s

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J.C 65 (2010) 363-383, 2010.
Inspire Record 818707 DOI 10.17182/hepdata.70833

The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150&lt;Q^2&lt;15000 GeV^2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q^2, jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurements is alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).

7 data tables

Normalised inclusive jet cross section in bins of $Q^{2}$.

Normalised 2-jet cross section in bins of $Q^{2}$.

Normalised 3-jet cross section in bins of $Q^{2}$.

More…

Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 09 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

61 data tables

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 120, 150, 200, 250 and 300 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 400, 500, 650, 800 and 1000 GeV^2.

The Neutral Current Reduced Cross Section for E- P interactions with a beam polarisation of -25.8 % for Q^2 values of 1200, 1500, 2000, 3000 and 5000 GeV^2.

More…

Jet Production in ep Collisions at Low Q^2 and Determination of alpha_s

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 67 (2010) 1-24, 2010.
Inspire Record 838435 DOI 10.17182/hepdata.31170

The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5<Q^2<100 GeV^2 and at inelasticity 0.2<y<0.7 using data recorded by the H1 detector at HERA in the years 1999 and 2000, corresponding to an integrated luminosity of 43.5 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q^2 and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction xi. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling alpha_s.

13 data tables

Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dQ^2}}$.

2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{dQ^2}}$.

3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{dQ^2}}$.

More…

Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…

Measurement of isolated photon production in deep-inelastic scattering at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Eur.Phys.J.C 54 (2008) 371-387, 2008.
Inspire Record 768933 DOI 10.17182/hepdata.45424

The production of isolated photons in deep-inelastic scattering $ep\to e \gamma X$ is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared $4&lt;Q^2&lt;150 $~GeV$^2$ and a mass of the hadronic system $W_X>50$ GeV. The analysis is based on a total integrated luminosity of 227~pb$^{-1}$. The production cross section of isolatedphotons with a transverse energy in the range $3 &lt; E_T^\gamma &lt; 10$ GeV and pseudorapidity range $-1.2 &lt; \eta^\gamma &lt; 1.8$ is measured as a function of $E_T^\gamma$, $\eta^\gamma$ and $Q^2$. Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections.

15 data tables

Measured inclusive isolated photon cross section.

Measured total cross section for isolated photons plus no-jets and 1-jet.

Differential cross section as a function of the photon ET.

More…

Study of Charm Fragmentation into $D^{*\pm}$ Mesons in Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 59 (2009) 589-606, 2009.
Inspire Record 792603 DOI 10.17182/hepdata.45316

The process of charm quark fragmentation is studied using $D^{*\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\pm}$ mesons.

20 data tables

Normalised D*+- cross section as a function of zJet for the D*+- jet sample.

Normalised D*+- cross section as a function of zHem for the D*+- jet sample.

Normalised D*+- cross section, corrected to the parton level, as a function of zJet for the D*+- jet sample.

More…

Strangeness Production at low $Q^2$ in Deep-Inelastic $ep$ Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 61 (2009) 185-205, 2009.
Inspire Record 810046 DOI 10.17182/hepdata.45305

The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 &lt; Q^2 &lt; 100 GeV^2 and the inelasticity 0.1 &lt; y &lt; 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

31 data tables

Visible cross section for the production of K0S and LAMBDA(BAR).

Ratio of strange baryon to meson production.

Ratio of K0S to charged hadron production.

More…