Date

Measurement of Spin Density Matrix Elements in $\Lambda(1520)$ Photoproduction at 8.2-8.8 GeV

The GlueX collaboration Adhikari, S. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Rev.C 105 (2022) 035201, 2022.
Inspire Record 1892395 DOI 10.17182/hepdata.132920

We report on the measurement of spin density matrix elements of the $\Lambda(1520)$ in the photoproduction reaction $\gamma p\rightarrow \Lambda(1520)K^+$, via its subsequent decay to $K^{-}p$. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Lab using a linearly polarized photon beam with $E_\gamma =$ 8.2-8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, $-(t-t_\text{0})$. We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are dominant in $\Lambda(1520)$ photoproduction.

10 data tables

Numerical results for all presented SDMEs. The first uncertainty is statistical, the second systematic

Numerical results for all presented natural and unnatural combinations, and covariances between $\rho^1_{11}$ and $\rho^1_{33}$. The first uncertainty is statistical, the second systematic

This table contains thinned out samples of the Markov chains used in the parameter estimation of the SDME measurements for $-(t-t_\text{0}) = 0.197\pm0.069~\text{GeV}^2/c^2$, reported in the main article. One in about 250 steps in the chain, which results in 200 different sets of SDMEs, is provided. These values should be used instead of bootstrapping of the results, in order to estimate uncertainties of physics models fitted to this data. To assess how the uncertainties propagate to the model uncertainties, one should evaluate the model under scrutiny for each of the 200 different sets of SDMEs. Plotting all resulting lines in a single plot will create bands which reflect the influence of the uncertainties in the data on the model. This method has the great advantage that all correlations are accurately taken into account.

More…

Measurement of the Reaction $\pi^+$ Polarized $n \to \pi^+ \pi^- p$ at 5.98-{GeV}/$c$ and 11.85-{GeV}/$c$ Using a Transversely Polarized Deuteron Target

de Lesquen, A. ; van Rossum, L. ; Svec, M. ; et al.
Phys.Rev.D 32 (1985) 21, 1985.
Inspire Record 206003 DOI 10.17182/hepdata.3934

In an experiment carried out at the CERN Proton Synchrotron and using the CERN polarized deuteron target, the reaction π+n↑→π+π−p has been measured in the region -t=0.1–1.0 (GeV/c)2 and m(π+π−)=0.36–1.04 GeV at incident momenta of 5.98 and 11.85 GeV/c. We present the m and t dependence of the measured 14 linearly independent spin-density-matrix elements and of the bounds on the moduli squared of the S- and P-wave recoil transversity amplitudes. The results show the presence of ‘‘A1’’ exchange in the unnatural nucleon-helicity-nonflip amplitudes. The natural ‘‘A2’’-exchange amplitudes dominate at large t. In the range 0.2≤-t≤0.4 (GeV/c)2 the mass dependence shows that the unnatural exchange amplitudes with transversity ‘‘down’’ are generally larger than those with transversity ‘‘up.’’ The opposite is true for the natural exchange. In this range of t and at the ρ0 mass, the P-wave unnatural amplitudes with both transversities contribute in equal amounts while the production by natural exchange proceeds entirely with transversity up. We observe rapid changes of the moduli within the ρ0 mass range and variations of the width and the position of the ρ0 peak in spin-averaged partial-wave cross sections. These structures have not been seen in previous polarization experiments and reveal spin dependence of ρ0 production. Our bounds cannot exclude an S-wave resonance in the range 700–800 MeV. The results emphasize the need for a better experimental and theoretical understanding of the mass dependence of the production mechanism.

19 data tables

No description provided.

'Y' components of RHO.

'X' components of RHO.

More…

The Reactions $K^- p \to \pi^\mp \Sigma^\pm$ (1385) at 8.25-{GeV}/$c$

The Birmingham-CERN-Glasgow-Michigan State-Paris collaboration Baubillier, M. ; Bloodworth, I.J. ; Burns, A. ; et al.
Z.Phys.C 23 (1984) 213, 1984.
Inspire Record 199642 DOI 10.17182/hepdata.16327

The reactionsK−p→π∓Σ(1385)± are studied at an incident laboratory momentum of 8.25 GeV/c using data from a high statistics (≃180 events/μb) bubble chamber experiment. In the case of the reactionK−p→π−Σ(1385)+ an amplitude analysis is performed and the complete Σ(1385)+ spin density matrix is extracted as a function oft′. The results are compared with the predictions of the additive quark model. In the case of the reactionK−p→π+Σ(1385)− the cross-sections for forward and backward production are determined.

7 data tables

No description provided.

No description provided.

No description provided.

More…

PRODUCTION AND DECAY ANGULAR DISTRIBUTIONS OF THE Y* (1385) IN THE LINE REVERSED REACTIONS: pi+ p ---> K+ Y* (1385) AND K- p ---> pi- Y* (1385) AT 11.5-GeV/c

Cautis, C.V. ; Ballam, Joseph ; Bouchez, J. ; et al.
Nucl.Phys.B 156 (1979) 507-531, 1979.
Inspire Record 133382 DOI 10.17182/hepdata.34679

We have measured in a single experimental setup, the differential cross sections and decay angular distributions of the Y ∗ (1385) produced in the two line-reversed reactions: π + p → K + Y ∗+ (1385) (279 events/ω b ) and K − p → π − Y ∗+ (1385) (190 events/ωb) at 11.5 GeV/ c . The data have been derived from a triggered bubble-chamber experiment using the SLAC Hybrid Facility. We find the differential cross sections and Y ∗ polarizations for the two reactions to be in agreement with exchange-degeneracy predictions, if kinematic differences are taken into account. The Stodolsky-Sakurai and additive quark model predictions are in agreement with the main features of the decay angular distributions of the Y ∗ (1385), except for small violations at low momentum transfer, which can be associated with a finite helicity non-flip contribution in the forward direction.

6 data tables

Axis error includes +- 10/10 contribution.

THESE FINAL DIFFERENTIAL CROSS SECTIONS ARE INCLUDED IN THE RECORD OF J. BALLAM ET AL., PRL 41, 676 (1978).

TRANSVERSITY AMPLITUDES FOR SIG(1385P13)+ PRODUCTION. THE IMAGINARY PARTS OF T(11) AND T(-1-1) WERE ARBITRARILY FIXED AT ZERO.

More…

Measurement of the Real Part of the Forward Amplitude in K- n and K+ n Elastic Scattering at 10-GeV/c and a New K+- n Dispersion Relation

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 134 (1978) 31-48, 1978.
Inspire Record 122470 DOI 10.17182/hepdata.35130

The differential cross section in the very forward direction has been measured for K − and K + scattering (break-up and coherent) on a deuterium target at an incident momentum of 10 GeV/ c . From these measurements and using a model for the scattering and re-scattering effects in deuterium, we have exploited the Coulomb-nuclear interference to deduce the real part of the K ± n scattering amplitude at a momentum transfer t = 0. The measurements are the first ever obtained for the K + n reaction and the first at this energy for the K − n reaction. A comparison has been made between our results and those predicted from dispersion relations. A new dispersion-relation fit including all the existing K ± n values at different energies has been performed.

2 data tables

SUM OF COHERENT AND BREAK-UP SCATTERING ON DEUTERIUM.

FROM FIT TO D(SIG)/DT OVER -T=0.0018 TO 0.074 GEV**2 ALLOWING FOR COULOMB SCATTERING, DOUBLE SCATTERING, INTERFERENCES AND FERMI MOTION. CORRELATION BETWEEN SLOPE AND RE(AMP)/IM(AMP) IS REFLECTED IN THE GIVEN SYSTEMATIC E RRORS.


Neutral Kaon Transmission Regeneration on Deuterons and Neutrons in Kaon Momentum Region of 10-GeV/c to 50-GeV/c

The Berlin-Budapest-Dubna-Prague-Serpukhov-Sofiya-Tbilisi collaboration Albrecht, K.F. ; Birulev, V.K. ; Vesztergombi, G. ; et al.
Sov.J.Nucl.Phys. 27 (1978) 199, 1978.
Inspire Record 122158 DOI 10.17182/hepdata.19037

None

4 data tables

THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.

REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.

CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.

More…

Anti-p p and p p Forward Elastic Scattering Between 4-GeV/c and 10-GeV/c

Jenni, P. ; Baillon, P. ; Declais, Y. ; et al.
Nucl.Phys.B 129 (1977) 232-252, 1977.
Inspire Record 120467 DOI 10.17182/hepdata.35255

Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Real Part of the K+- p Forward Scattering Amplitude at 4.2-GeV/c, 7-GeV/c and 10-GeV/c

Baillon, P. ; Declais, Y. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 107 (1976) 189-210, 1976.
Inspire Record 108434 DOI 10.17182/hepdata.35862

The differential cross section of K − p and K + p elastic scattering has been measured at 4.2, 7 and 10 GeV/ c in the very forward region of scattering angles. The measurements have been made at the CERN PS by means of multiwire proportional chambers and counters. The region of momentum transfers t is 0.001 ⩽ | t | ⩽ 0.10 GeV 2 at the highest momentum and 0.001 ⩽ | t | ⩽ 0.03 GeV 2 at the lowest. Over these regions the Coulomb and the nuclear amplitudes reach their maximum interference. We have used a parametrisation of the above amplitudes to determine the value of the real part of the nuclear forward scattering amplitude. A dispersion relation fit has then been performed using these and earlier measurements; the asymptotic behaviour of the K ± p real parts has been examined in the light of this fit.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Coherent K0(S) Regeneration in Hydrogen and Deuterium from 3.5-GeV/c to 10.5-GeV/c

Freytag, D. ; Schultz, C. ; Patel, P. ; et al.
Phys.Rev.Lett. 35 (1975) 412-416, 1975.
Inspire Record 103337 DOI 10.17182/hepdata.21146

The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.

2 data tables

No description provided.

NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.