The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
Double-spin asymmetries in the cross section of electroproduction of $\rho^0$ and $\phi$ mesons on the proton and deuteron are measured at the HERMES experiment. The photoabsorption asymmetry in exclusive $\rho^0$ electroproduction on the proton exhibits a positive tendency. This is consistent with theoretical predictions that the exchange of an object with unnatural parity contributes to exclusive $\rho^0$ electroproduction by transverse photons. The photoabsorption asymmetry on the deuteron is found to be consistent with zero. Double-spin asymmetries in $\rho^0$ and $\phi $ meson electroproduction by quasi-real photons were also found to be consistent with zero: the asymmetry in the case of the $\phi$ meson is compatible with a theoretical prediction which involves $s\bar{s}$ knockout from the nucleon.
The photoabsorption asymmetry A1 for exclusive RHO0 production.
The photoabsorption asymmetry A1 for exclusive PHI electroproduction.
The photoabsorption asymmetry A1 for electroproduction of RHO0 mesons by quasi-real photons.
We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.
The second systematic (DSYS) error is due to QCD evolution.
First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.
First moment of fitted G1 evaluated on the whole X region.
Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.
Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.
We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.
The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.
The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q~2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.
No description provided.
No description provided.
No description provided.
Cross sections for deep-inelastic electron scattering from liquid deuterium, gaseous He4, and solid Be, C, Al, Ca, Fe, Ag, and Au targets were measured at the Stanford Linear Accelerator Center using electrons with energies ranging from 8 to 24.5 GeV. These data cover a range in the Bjorken variable x from 0.089 to 0.8, and in momentum transfer Q2 from 2 to 15 (GeV/c)2. The ratios of cross sections per nucleon (σAσd)is for isoscalar nuclei have been extracted from the data. These ratios are greater than unity in the range 0.1<x<0.3, while for 0.3<x<0.8 they are less than unity and decrease logarithmically with atomic weight A, or linearly with average nuclear density. No Q2 dependence in the ratios was observed over the kinematic range of the data. These results are compared to various theoretical predictions.
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 1 pct.
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 2.1 pct.
Additional overall systematic error of 2.1 pct plus a target to target systematic error of 0.6 pct.
The spin structure function of the neutron g1n has been determined over the range 0.03<x<0.6 at an average Q2 of 2 (GeV/c)2 by measuring the asymmetry in deep inelastic scattering of polarized electrons from a polarized He3 target at energies between 19 and 26 GeV. The integral of the neutron spin structure function is found to be F01g1n(x)dx=-0.022±0.011. Earlier reported proton results together with the Bjorken sum rule predict F01g1n(x)dx=-0.059±0.019.
No description provided.
Extrapolarity to full x range.
We have measured inelastic electron-deuteron, electron-proton, and electron-aluminum cross sections at 10° in the kinematic region between elastic deuteron scattering and the second resonance region at six beam energies between 9.8 and 21 GeV. The elastic electron-neutron cross section was extracted from the quasielastic data at Q2=2.5,4.0,6.0,8.0, and 10.0 (GeV/c)2. The ratio of elastic cross sections σnσp falls with increasing Q2 above 6 (GeV/c)2. The inelastic data are compatible either with y scaling (scattering from a single nucleon) or with ξ scaling (scattering from quarks).
Elastic proton cross sections.
No description provided.
No description provided.
We report the extraction of R = σ L / σ T from a global analysis of eight SLAC deep inelastic experiments on e-p and e-d scattering performed between 1970 and 1985. Values of R p , R d , and R d − R p are determined over the entire SLAC kinematic range: 0.1⩽ x ⩽0.9 and 0.6⩽ Q 2 ⩽20.0 (GeV/ c ) 2 . We find that R p = R d . Measured values of R ( x , Q 2 ) are larger than predictions based on perturbative QCD and on QCD with the inclusion of kinematic target mass terms, indicating that dynamical higher twist effects may be important in the SLAC kinematic range.
No description provided.
Data from experiment E-140.
Global extracting of R from all the experiments.