Differential cross section data of the CELLO experiment on pair production of muons, taus, and heavy quarks ine+e−-annihilation are presented and analysed, together with our data on Bhabha scattering, in terms of compositeness effects characterized by the mass scale Λ. We discuss difficulties in the combination of limits Λ from different experiments. The appropriate parameter to combine different results turns out to be ɛ=±1/Λ2, which is in contrast to Λ Gaussian distributed.
Errors are combined statistics and systematics.
Errors are combined statistics and systematics.
Errors are combined statistics and systematics.
None
No description provided.
No description provided.
No description provided.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
Jet properties ine+e− annihilation at center of mass energies of 14, 22, 35 and 43.7 GeV were studied with the data collected in the TASSO detector at PETRA, using the same evaluation procedures for all the energies. The total hadronic cross section ratio for the center of mass energy interval 39–47 GeV was determined to be ℛ=4.11±0.05 (stat)±0.18(syst.) at\(\langle \sqrt s \rangle= 43 - 7\) GeV. Corrected distributions of global shape variables are presented as well as the inclusive charged particle distributions for scaled momentum and transverse momentum. The center of mass energy evolution of the average sphericity, thrust, aplanarity and particle momentum is shown.
R values. First systematic error comes from selection cuts and Monte Carlo, the second from the luminosity measurement and missing terms in the radiative correction calculations.
Normalised scaled momentum distributions. Data have combined statistical and systematic errors. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).
Normalised scaled momentum distributions. Data have combined statistical and systematic errors. The binning is as used in fits in the paper. These data superceded previous TASSO data (ZP C22 (84) 307 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1279> RED = 1279 </a>)).
The full TASSO data have been used to study the inclusive production of strange mesons ine+e− annihilations. Differential and total cross sections have been measured in the centre of mass energy range 14 to 44 GeV forK0,\(\bar K^0\) and 34.5 to 44 GeV forK*± (892). We have investigated the strange meson production properties in jets by studying the rapidity andpt2 distributions as well as the evolution of the multiplicities as a function of the event sphericity. We find no evidence that the strange meson yields increase with increasing sphericity faster than the total charged multiplicity.
Scaled differential cross sections for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
Scaled differential cross section for K0 production. Errors are statistical and systematic combined.
We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.
DIFFERENTIAL JET MULTIPLICITIES.
DIFFERENTIAL JET MULTIPLICITIES.
The production ofb andc quarks ine+e− annihilation has been studied with the CELLO detector in the range from 35 GeV up to the highest PETRA energies. The heavy quarks have been tagged by their semileptonic decays. The charge asymmetries forb quarks at 35 and 43 GeV have been found to beAb=−(22.2±8.1)% andAb=−(49.1±16.5)%, respectively, using a method incorporating jet variables and their correlations for the separation of the heavy quarks from the back ground of the lighter quarks. Forc quarks we obtainAc=−(12.9±8.8)% andAc=+(7.7±14.0)%, respectively. The axial vector coupling constants of the heavy quarksc andb are found to beac=+(0.29±0.46) andab=−(1.15±0.41) taking\(B^0 \overline {B^0 } \) mixing into account. The results are in agreement with the expectations from the standard model.
BOTTOM quark charge asymmetry.
CHARMED quark charge asymmetry.
The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.
Results of simultaneous fit to both asymmetries. This table is for the CHARMED quark.
Results of simultaneous fit to both asymmetries. This table is for the BOTTOM quark.
Results for BOTTOM quark asymmetry with c asymmetry constrained to the standard model value.
Results are presented on an investigation of photons produced in multihadronic final states frome+e− annihilation at 35 GeV and 44 GeV center of mass energies. Scalling violation between 14 and 44 GeV is observed in inclusive photon spectra. Comparing inclusive π0 spectra with charged pion spectra it is found that the average π0 multiplicity exceeds the charged pion multiplicity scaled by factor of 0.5 by (16±5)% and (21±7)% at 35 and 44 GeV respectively. The excess can be attributed to isospin violating decays of hadrons. The η multiplicity is found to be 〈nη〈=0.64±0.09±0.06 at 35 GeV. With a significance of three standard deviations a signal from quark bremsstrahlung is observed. The measured charge asymmetry in hadronic final states, due to the interference between initial and final state radiation, ofA=−0.141±0.041 is in accord with QED expectations. An interference effect in the azimuth angle distribution of charged jets around the photon direction is observed for the first time.
No description provided.
No description provided.
No description provided.
The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.