K+ p, K- p AND anti-p p ELASTIC SCATTERING AT 32.1-GeV/c

The French-Soviet & CERN-Soviet collaborations Lewin, C. ; Denegri, D. ; Givernaud, A. ; et al.
SACLAY-DPhPE-79-19, 1979.
Inspire Record 144202 DOI 10.17182/hepdata.43800

None

2 data tables match query

THESE DATA ARE TABULATED IN THE RECORD OF THE PUBLISHED VERSION.

FROM QUADRATIC EXPONENTIAL FITS TO D(SIG)/DT FOR -T = 0 TO 1.4 GEV**2. SYSTEMATIC ERRORS INCLUDED.


Isobar production and elastic scattering in p p interactions from 6-GeV/c to 30-GeV/c

Edelstein, R.M. ; Carrigan, Richard A., Jr. ; Hien, N.C. ; et al.
Phys.Rev.D 5 (1972) 1073-1096, 1972.
Inspire Record 67297 DOI 10.17182/hepdata.22467

Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

PROTON-PROTON ELASTIC SCATTERING BETWEEN 13.0-GeV/c AND 28.4-GeV/c

Ma, Z.Ming ; Sprafka, R.J. ; Smith, G.A. ;
PRINT-69-1741, 1969.
Inspire Record 1104467 DOI 10.17182/hepdata.1131

None

20 data tables match query
More…

Small-Angle Elastic Scattering of Protons and Pions, 7-20 BeV/c

Foley, K.J. ; Lindenbaum, S.J. ; Love, W.A. ; et al.
Phys.Rev.Lett. 11 (1963) 425-429, 1963.
Inspire Record 46642 DOI 10.17182/hepdata.228

None

8 data tables match query

'1'. '2'. '3'.

More…

Small Angle Elastic p p Scattering at 30-GeV, 50-GeV, and 70-GeV

Geshkov, I.M. ; Ikov, N.L. ; Markov, P.K. ; et al.
Phys.Rev.D 13 (1976) 1846-1850, 1976.
Inspire Record 113910 DOI 10.17182/hepdata.24790

A thin polyethylene target was exposed to the internal proton beam of the Serpukhov accelerator at 30, 50, and 70 GeV. The wide-angle recoil protons were registered by photoemulsion stacks and the differential cross sections of the elastic p−p scattering in the range of four-momentum transfer squared 0.0025≤|t|≤0.12 (GeV/c)2 were measured. The ratio of the real to the imaginary part of the forward nuclear amplitude α, the slope parameter of the diffraction peak b, and the total elastic cross section σel were found to be as follows: at 30 GeV, α=−0.183±0.051, b=10.61±0.27 (GeV/c)−2, σel=7.7±0.2 mb; at 50 GeV, α=−0.068±0.040, b=11.25±0.28 (GeV/c)−2, σel=7.0±0.2 mb; at 70 GeV, α=−0.104±0.065, b=11.21±0.40 (GeV/c)−2, σel=7.1±0.2 mb.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Scattering of Protons, Antiprotons, Negative Pions, and Negative Kaons at High Energies

Foley, K.J. ; Gilmore, R.S. ; Lindenbaum, S.J. ; et al.
Phys.Rev.Lett. 15 (1965) 45-50, 1965.
Inspire Record 49102 DOI 10.17182/hepdata.204

None

5 data tables match query
More…

Proton proton elastic scattering and nucleon resonance production at high-energies

Allaby, J.V. ; Diddens, A.N. ; Dobinson, R.W. ; et al.
Nucl.Phys.B 52 (1973) 316-382, 1973.
Inspire Record 73454 DOI 10.17182/hepdata.32650

Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.

4 data tables match query

ESTIMATED 8 PCT RANDOM ERROR.

ESTIMATED 8 PCT RANDOM ERROR.

ESTIMATED 8 PCT RANDOM ERROR.

More…

K+ P AND K- P ELASTIC SCATTERING AT 32.1-GEV/C. FRANCE-SOVIET UNION AND CERN-SOVIET UNION COLLABORATIONS

Lewin, C. ; Denegri, D. ; Givernaud, A. ; et al.
Z.Phys.C 3 (1979) 275-284, 1979.
Inspire Record 148166 DOI 10.17182/hepdata.15899

None

2 data tables match query

CROSS-OVER IS AT -T = 0.17 +- 0.02 GEV**2. DIVIDE BY 20 TO GET D(SIG)/DT IN MB/GEV**2. CORRECTED FOR LOST EVENTS FOR -T < 0.12 GEV**2.

FROM QUADRATIC EXPONENTIAL FIT TO D(SIG)/DT. BOTH STATISTICAL AND SYSTEMATIC ERRORS INCLUDED IN VALUES.


The Real Part of the p-p and p-d Forward Scattering Amplitudes from 50 GeV to 400 GeV

Jenkins, E. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 41 (1978) 217, 1978.
Inspire Record 130086 DOI 10.17182/hepdata.11248

Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.

9 data tables match query

No description provided.

No description provided.

NORMALIZATION UNCERTAINTY IS 0.90 PCT.

More…

Differential cross-sections of elastic p p scattering in the energy range 8-70 gev

Beznogikh, G.G. ; Bujak, A. ; Kirillova, L.F. ; et al.
Nucl.Phys.B 54 (1973) 78-96, 1973.
Inspire Record 84176 DOI 10.17182/hepdata.8006

In this paper we present tables of absolute differential cross sections of elastic pp scattering together with the values of the slope parameter B and the real-part parameter α, where B= d d t In dσ d t α= Re A(0) Im A(0) and A (0) is the amplitude of elastic pp scattering at t = 0. The cross-section data have been obtained at the Serpukhov accelerator from 8 to 70 GeV in the | t |-range 0.0007 − 0.12 (GeV/ c ) 2 .

30 data tables match query

No description provided.

No description provided.

No description provided.

More…