Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 776 (2018) 195-216, 2018.
Inspire Record 1511868 DOI 10.17182/hepdata.77603

The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at sqrt(s[NN]) = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 < pT < 100 GeV. The analysis focuses on pT > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pT of about 60-80 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pT greater than or equal to 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

22 data tables

The $v_{2}$ result from SP method as a function of $p_{T}$ in 0-5\% centrality bin of PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Shaded boxes represent systematic uncertainties.

The $v_{2}$ result from SP method as a function of $p_{T}$ in 5-10\% centrality bin of PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Shaded boxes represent systematic uncertainties.

The $v_{2}$ result from SP method as a function of $p_{T}$ in 10-20\% centrality bin of PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV. Shaded boxes represent systematic uncertainties.

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14 data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

More…

First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 776 (2018) 249-264, 2018.
Inspire Record 1512107 DOI 10.17182/hepdata.80519

This letter presents the first measurement of jet mass in Pb-Pb and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV and 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm and resolution parameter $R = 0.4$. The jets are measured in the pseudorapidity range $|\eta_{\rm{jet}}|<0.5$ and in three intervals of transverse momentum between 60 GeV/$c$ and 120 GeV/$c$. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties.

8 data tables

Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 60-80 GeV/c

Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 80-100 GeV/c

Jet mass distribution in pPb collisions at cme 5020 GeV, pT,jet ch = 100-120 GeV/c

More…

Measurements of the charm jet cross section and nuclear modification factor in pPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 772 (2017) 306-329, 2017.
Inspire Record 1507091 DOI 10.17182/hepdata.77602

The CMS Collaboration presents the first measurement of the differential cross section of jets from charm quarks produced in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of sqrt(s[NN]) = 5.02 TeV, as well as results from charm quark jets in proton-proton (pp) collisions at sqrt(s) = 2.76 and 5.02 TeV. By comparing the yields of the pPb and pp collision systems at the same energy, a nuclear modification factor for charm jets from 55 to 400 GeV/c in pPb collisions at sqrt(s[NN]) = 5.02 TeV of R[pA] = 0.92 +/- 0.07 (stat) +/- 0.11 (syst) is obtained. This is consistent with an absence of final-state energy loss for charm quarks in pPb collisions. In addition, the fraction of jets coming from charm quarks is found to be consistent with that predicted by PYTHIA 6 for pp collisions at sqrt(s)= 2.76 and 5.02 TeV, and is independent of the jet transverse momentum from 55 to 400 GeV/c.

3 data tables

Inclusive charm-jet cross section (and fraction) in pp collisions at 5.02 TeV.

Inclusive charm-jet cross section (and fraction) in pp collisions at 2.76 TeV

Inclusive charm-jet cross section in pp and pPb collisions at 5.02 TeV, with nuclear modification factor RpA for c-jets


Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 772 (2017) 567-577, 2017.
Inspire Record 1507090 DOI 10.17182/hepdata.78365

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

5 data tables

Charged-particle pseudorapidity density for ten centrality classes over a broad $\eta$ range in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02\,\mathrm{TeV}$. Boxes around the points reflect the total uncorrelated systematic uncertainties, while the filled squares on the right reflect the correlated systematic uncertainty (evaluated at $\eta=0$). Statistical errors are generally insignificant and smaller than the markers. Also shown is the reflection of the $3.5<\eta<5$ values around $\eta=0$ (open circles). The line corresponds to fits of the difference between two Gaussians centred at $\eta=0$ ($f_{\text{GG}}$) [PLB754.373] to the data.

Charged-particle pseudorapidity density at midrapidity in most perihperhal (80-90%) Pb-Pb collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5.02\,\mathrm{TeV}$.

Total number of charged particles as a function of the mean number of participating nucleons [PRC88.044909]. The total charged-particle multiplicity is given as the integral over $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ over the measured region ($-3.5<\eta<5$) and extrapolations from fitted functions in the unmeasured regions. The contribution from unmeasured $\eta$ regions amounts to $\approx30\%$ of the total number of charged particles. The uncertainty on the extrapolation to the unmeasured pseudorapidity region is smaller than the size of the markers. The contribution to the systematic uncertainties from the centrality determination and electromagnetic processes are vanishing compared to the contribution from the largest differences between the fitted functions. A function inspired by factorisation [PRC83.024913] is fitted to the data, and the best fit yields $a=51.5\pm7.3$, $b=0.16\pm0.05$.

More…

W and Z boson production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 02 (2017) 077, 2017.
Inspire Record 1496634 DOI 10.17182/hepdata.77359

The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward ($-4.46 < y_{\rm cms} < -2.96$) and forward ($2.03 < y_{\rm cms} < 3.53$) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of $60<m_{\mu\mu}<120$ GeV/$c^2$ and muon transverse momentum ($p_{\rm T}^\mu$) larger than 20 GeV/$c$, is measured. The production cross section and charge asymmetry of muons from W-boson decays with $p_{\rm T}^\mu>10$ GeV/$c$ are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.

6 data tables

Z-boson production cross section in the dimuon decay channel at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

Cross section of $\mu^{+}$ from W$^{+}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

Cross section of $\mu^{-}$ from W$^{-}$ boson decay at backward and forward rapidities measured in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. The first uncertainty is statistical, the second is systematic.

More…

Relative modification of prompt psi(2S) and J/psi yields from pp to PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 118 (2017) 162301, 2017.
Inspire Record 1495840 DOI 10.17182/hepdata.77102

The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30 GeV/c and 1.6 < abs(y) < 2.4 covering 3 < pt < 30 GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.

10 data tables

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.

Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.

More…

Version 2
Measurements of prompt charm production cross-sections in $pp$ collisions at $\sqrt{s} = 5\,$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 147, 2017.
Inspire Record 1490663 DOI 10.17182/hepdata.74708

Production cross-sections of prompt charm mesons are measured using data from $pp$ collisions at the LHC at a centre-of-mass energy of $5\,$TeV. The data sample corresponds to an integrated luminosity of $8.60\pm0.33\,$pb$^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^0$, $D^+$, $D_s^+$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\text{T}}$, and rapidity, $y$. They cover the rapidity range $2.0<y<4.5$ and transverse momentum ranges $0 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D^0$ and $D^+$ and $1 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D_s^+$ and $D^{*+}$ mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of $1 < p_{\text{T}} < 8\, \text{GeV}/c$ are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively.

14 data tables

Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D^{+} + D^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D_{s}^{+} + D_{s}^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

More…

Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 118 (2017) 122301, 2017.
Inspire Record 1489183 DOI 10.17182/hepdata.77013

Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta) < 2.4, and a third particle measured in the hadron forward calorimeters (4.4 < abs(eta) < 5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

10 data tables

Three-particle correlation with respect to the 2nd order event plane from Pb-going side in pPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.

Three-particle correlation with respect to the 2nd order event plane from p-going side in pPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.

Three-particle correlation with respect to the 2nd order event plane in PbPb collisions at multiplicity [185,220), with individual track pT between 0.3 to 3.0 GeV/c. Data points are plotted at the bin center.

More…

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

9 data tables

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

More…