The properties of events having the topology and kinematic features of double Pomeron exchange are described. The data were taken at the CERN pp¯ collider at s=0.63 TeV in the UA1 detector. A calorimeter trigger was used to isolate events in which a central cluster of particles was separated from forward particles by large rapidity gaps. The invariant mass M of the central cluster (possibly a colliding Pomeron-Pomeron system) covers the range 10-70 GeV/c2. The M dependence of charged particle multiplicity distributions in these double Pomeron events is strikingly different from their s dependence in pp and pp¯ interactions.
Measurements of inclusive transverse-momentum spectra for KS0 mesons produced in proton-antiproton collisions at s of 630 and 1800 GeV are presented and compared with data taken at lower energies. The ratio, as a function of pT, of the cross section for KS0 to that for charged hadrons is very similar to what is observed at lower energies. At 1800 GeV, we calculate the strangeness-suppression factor λ=0.40±0.05.
We present measurements of the pseudorapidity (η) distribution of charged particles (dNchdη) produced within |η|≤3.5 in proton-antiproton collisions at s of 630 and 1800 GeV. We measure dNchdη at η=0 to be 3.18±0.06(stat)±0.10(syst) at 630 GeV, and 3.95±0.03 (stat)±0.13(syst) at 1800 GeV. Many systematic errors in the ratio of dNchdη at the two energies cancel, and we measure 1.26±0.01±0.04 for the ratio of dNchdη at 1800 GeV to that at 630 GeV within |η|≤3. Comparing to lower-energy data, we observe an increase faster than ln(s) in dNchdη at η=0.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75
We present the results of a search for third generation leptoquark (LQ) pairs in 110±8pb−1of p¯p collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume third generation leptoquarks decay to a τ lepton and a b quark with branching ratio β. We observe one candidate event, consistent with standard model background expectations. We place upper limits on σ(p¯p→LQLQ¯)̇β2 as a function of the leptoquark mass MLQ. We exclude at 95% confidence level scalar leptoquarks with MLQ<99GeV/c2, gauge vector leptoquarks with MLQ<225GeV/c2, and nongauge vector leptoquarks with MLQ<170GeV/c2 for β=1.
For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.
We present a study of the production of K_s^0 and Lambda^0 in inelastic pbar-p collisions at sqrt(s)= 1800 and 630 GeV using data collected by the CDF experiment at the Fermilab Tevatron. Analyses of K_s^0 and Lambda^0 multiplicity and transverse momentum distributions, as well as of the dependencies of the average number and
We use 106 $\ipb$ of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to $\ttbar$ are presented. At the 95% confidence level, we exclude the existence of a leptophobic $\zpr$ boson in a model of topcolor-assisted technicolor with mass $M_{\zpr}$ $<$ 480 $\gev$ for natural width $\Gamma$ = 0.012 $M_{\zpr}$, and $M_{\zpr}$ $<$ 780 $\gev$ for $\Gamma$ = 0.04 $M_{\zpr}$.
We present a study of pp¯ collisions at s=1800 and 630 GeV collected using a minimum bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to “soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity, transverse momentum (pT) spectrum, and the average pT and event-by-event pT dispersion as a function of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a function of the center of mass (c.m.) energy. We find evidence that the properties of the soft sample are invariant as a function of c.m. energy.