The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.
No description provided.
Invariant cross section of charged hadrons.
Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.
The production of Λ 's and Ξ − 's in proton-antiproton collisions at 200 and 900 GeV c.m. energy has been studied using decays observed in the UA5 streamer chambers. The results are compared to previously published 546 GeV data, to results from other experiments, and to four theoretical models. The Λ yield per inelastic event is estimated to be 0.42±0.11 at 200 GeV and 0.66±0.14 at 900 GeV. We find a mean number of Ξ − 's per inelastic collision of 0.03 −0.02 +0.04 at 200 GeV and 0.06 −0.03 +0.05 at 900 GeV. The average transverse momentum of Λ's in the rapidity region | y |⩽2 is found to be 0.80 −0.14 +0.20 GeV/ c at 200 GeV and 0.74±0.09 GeV/ c at 900 GeV. The average transverse momentum of Ξ − 's in the rapidity region | y |⩽3 is estimated to be 0.8 −0.2 +0.4 GeV/ c at 200 GeV and 0.7 −0.1 +0.2 GeV/ c at 900 GeV which is lower than the unexpectedly high value of 1.1±0.2 GeV/ c measured at 546 GeV. The ratio of Ξ − production to Λ production in the region | y |⩽2, p t >1 GeV/ c is 0.07 −0.04 +0.08 at 900 GeV. This value is consistent with the ratio found in e + e − collisions and lower energy pp collisions but lower than the value obtained at 546 GeV. The average particle composition of events at 200 and 900 GeV, estimated using UA5 data, is presented.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.
Correlation strength for different choices of pseudorapidity intervals.
Correlation strength as a function of the central gap size for the symmetric data.
Correlation strength as a function of the centre of the separating gap for a gap size of 2.
Isolated photons, produced directly by a scattering process, have been observed in the UA1 experiment at the CERN p p collider at centre-of-mass energies √=546 GeV and √=630 GeV . Single and double photon differential cross sections have been determined and found to be consistent with the expectations of QCD.
No description provided.
No description provided.
No description provided.
Results on inclusive kaon production at 200 and 900 GeV centre of mass (CM) energy obtained with the UA5 detector at the pulsed CERN SPS antiproton-proton Collider are presented and compared with our earlier data at 546 GeV. The average transverse momentum 〈 p t 〉 of kaons has been estimated to be (0.50±0.04) GeV/ c at 200 GeV and (0.63±0.03) GeV/ c at 900 GeV in the central region and shows an increase with CM energy that is smore rapid than that expected from previous ISR data. The yield of kaons per inelastic p p event is found to be (0.72±0.12) at 200 GeV and (1.31±0.14) at 900 GeV. Finally, the K/π ratio has been found to exhibit a very slow increase with CM energy.
No description provided.
We present updated results from the UA1 experiment on cross sections times leptonic branching ratios for intermediate vector bosons produced in proton-antiproton collisions at a centre-of-mass energy of 0.630 TeV. We find that σ·B( W → l βn)=0.63±0.04±0.10 nb and σ·B( Z 0 → l + l − =0.071±0.011 nb where l denotes an average of electron and muon channels. An average over all data (electron and muon channels at 0.546 and 0.630 TeV) gives a ratio of R≡σ·( W → l ν)/σ·B( Z 0 → l + l − ) = 9.1 +1.7 −1.2 . Using current theoretical predictions for this quantity, limits are extracted on the number of light neutrino types. Combining UA1 and UA2 data and imposing the bound N ν ⩾3 we find that N ν ⩽5.9 at 90% CL. Constraints on the mass of the top quark are also discussed.
THE CORRESPONDING VALUE FROM UA2 IS BR*SIG = 0.61+-0.10+-0.07.
No description provided.
THE CORRESPONDING VALUE FROM UA2 IS BR*SIG = 0.57+-0.04+-0.07.
We have measured the W transverse momentum distribution ( p T W ) using a sample of 323 W → eν and W → μν events produced in proton-antiproton collisions at the CERN collider. In the present letter we extend the study of the distribution up to p T W ∼- m W and compare to leading and higher order QCD. This comparison is a precise test of QCD with hadron colliders and the inclusive spectrum gives good agreement over a large range of p T W . However we observed two events at very large p T W (∼- 100 GeV/ c ) in which the W candidate recoils against an energetic di-jet system. Both events have a very large missing transverse energy and a jet-jet mass compatible with the W mass. In a separate analysis, a topologically similar event has been observed in which a high-mass di-jet system is balanced by a large missing transverse energy which could be interpreted as Z 0 → ν ν decay. We cannot easily explain these three events in terms of explicit second-order QCD calculations. However we cannot exclude at this stage the possibility that they are the result of non-gaussian fluctuations in the response of UA1 calorimetry or a statistical fluctuation in the data.
THESE NUMBERS WRE READ OFF FIG 1A.
We report evidence for beauty particle production through the observation of dimuon events from proton-antiproton collisions at energies of √ s =546 GeV and √ s =630 GeV at the CERN collider. Our data indicate that semi-leptonic decays of beauty particles are the dominant source of pairs of high- p T muons. The beauty flavour creation (gg or q¯q→b¯b ) cross-section needed to explain the dimuon rate is σ{ p¯p→b¯b +X, p b T 5 GeV/c, |η|<2.0}=(1.1±0.1±0.4) μb, which is in good agreement with QCD calculations. We also observe clear signals for ϒ→μ + μ − (hidden beauty) and high- p T J/ψ→μ + μ − , well above the backgraound of continuum muon pairs from the Drell-Yan mechanism.
No description provided.