Inclusive Strange Particle Production in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Borovikov, A.A. ; et al.
Nucl.Phys.B 165 (1980) 1-18, 1980.
Inspire Record 141734 DOI 10.17182/hepdata.8000

The production of K s 0 , Λ and Λ is measured in π + p interactions at 32 GeV/ c . The total inclusive cross sections are found to be 2.07±0.14, 1.00±0.10 and 0.14±0.04 mb, respectively. The energy dependence of total inclusive cross sections and inclusive distributions is discussed and a comparison is made with p, p , K + and K − induced reactions. We find that the factorization hypothesis is satisfied for the inclusive reactions π + p→ Λ X and K + p→ Λ X. Multi-strange-particle production is similar in π + p and K + p interactions at 32 GeV/ c . There is evidence for beam fragmentation in Λ production. The hierarchy of Λ inclusive cross sections in p , K + , π + and K − induced reactions at 32 GeV/ c is qualitatively explained by a quark recombination model. The cross sections for inclusive K ∗ + (892) and Σ + (1385) production in 32 GeV/ c π + p interactions are 1.07±0.57 mb and 0.19±0.08 mb, respectively.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the $\pi^{-} p \rightarrow X^{0}n$ cross section in the momentum up to 50 GeV/c

Bolotov, V.N. ; Isakov, V.V. ; Kakuridze, D.B. ; et al.
Sov.J.Nucl.Phys. 19 (1974) 308-310, 1974.
Inspire Record 1392569 DOI 10.17182/hepdata.19171

None

2 data tables

No description provided.

No description provided.


Multiple Pion Production in pi-Ne Collisions at 10.5-GeV and 200-GeV

Elliott, J.R. ; Fortney, L.R. ; Goshaw, A.T. ; et al.
Phys.Rev.Lett. 34 (1975) 607, 1975.
Inspire Record 2065 DOI 10.17182/hepdata.31340

We have measured the multiplicities of pions produced in the collisions of π mesons with neon nuclei at bombarding momenta of 10.5 and 200 GeV/c. The diffractive production of pions is clearly separable. If one excludes the diffractive part, the pion multiplicity obeys the same Koba-Nielsen-Olesen scaling as found previously for π−−p collisions. This fact would seem to indicate the validity of an energy-flux or collective-variable description of the production process. A surprisingly large number of energetic protons (> 1 GeV/c lab momentum) are found to be produced in π-Ne collisions.

1 data table

Elastic and diffractive events removed.


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 2: Phase shifts at T(pi) = 32.7-MeV, 45.1-MeV, and 68.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2159-2165, 1995.
Inspire Record 404659 DOI 10.17182/hepdata.25955

We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.

3 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 1: The Isospin even forward scattering amplitude at T(pi) = 32.2-MeV and 44.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2144-2158, 1995.
Inspire Record 404658 DOI 10.17182/hepdata.25972

The values of the pion nucleon (πN) σ term, as determined, on the one hand, from experimental pion nucleon scattering by means of dispersion relations and, on the other hand, from baryon masses by means of chiral perturbation theory, differ by 10 to 15 MeV. The origin of this discrepancy is not yet understood. If the difference between the two values is attributed to the scalar current of strange sea quark pairs within the proton, the contribution to the proton mass would be of the order of 120 MeV. The discrepancy may hint at either theoretical deficiencies or an inadequate πN database. In order to provide reliable experimental data we have measured angular distributions of elastic pion proton scattering at pion energies Tπ=32.2 and 44.6 MeV using the magnet spectrometer LEPS located at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland. From the data covering the region of the Coulomb nuclear interference, the real parts of the isospin-even forward scattering amplitude ReD+(t=0), have been determined as a function of energy. The results have been compared with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, revealing discrepancies most pronounced for the π+p data. The experimentally determined values for ReD+(t=0), however, support the KH80 prediction (which is based on πN data available in 1979).

2 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Study of quark line selection rule (OZI rule) in hadron processes. 1. Charge exchange OZI suppressed reaction pi- + p ---> phi + n at P(pi-) = 32-GeV/c

Viktorov, V.A. ; Golovkin, S.V. ; Dorofeev, V.A. ; et al.
Phys.Atom.Nucl. 59 (1996) 1175-1183, 1996.
Inspire Record 405705 DOI 10.17182/hepdata.40543

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////RES-DEF(RES=PHI,BACK=CORRECTED)//DECAY-BR(BRN=PHI --> K+ K-,BR=0.49 +- 0.01)).


Study of Light Meson Radiative Decays

Bityukov, S.I. ; Borisov, G.V. ; Viktorov, V.A. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 800, 1988.
Inspire Record 253771 DOI 10.17182/hepdata.40758

None

5 data tables

No description provided.

No description provided.

No description provided.

More…

OBSERVATION OF INVERSE ELECTROPRODUCTION OF PIONS ON C-12 NUCLEUS AT 164-MeV PION ENERGY AND DETERMINATION OF F1(v) NUCLEON FORM-FACTOR

Alekseev, G.D. ; Blokhintseva, T.D. ; Karpukhin, V.V. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 801, 1987.
Inspire Record 247868 DOI 10.17182/hepdata.38865

None

3 data tables

No description provided.

No description provided.

No description provided.


Study of a Possible Exotic $\phi \pi^0$ State With a Mass of About 1.5-{GeV}/$c^2$

Bityukov, S.I. ; Dzhelyadin, R.I. ; Dorofeev, V.A. ; et al.
Phys.Lett.B 188 (1987) 383, 1987.
Inspire Record 233160 DOI 10.17182/hepdata.10556

New data have been obtained on a resonance in the ϕπ 0 system, the C meson, which is formed in the π − p → ϕπ 0 n charge-exchange reaction. The experiment has been performed at the Serpukhov 70 GeV accelerator. The mass and the width of the resonance are measured to be M =1480±40 MeV , Γ =130±60 MeV . The production cross section is determined at a π − momentum of 32.5 GeV / c : σ ( π − p → Cn )· BR ( C → ϕπ 0 )=40±15 nb . The C(1480) meson has an isospin I =1 and spin-parity J PC =1 − − . It is strongly coupled to the ϕπ 0 channel and is considered as a possible exotic meson.

3 data tables

No description provided.

No description provided.

THE ACCEPTANCE CORRECTED DISTRIBUTION.


Possible Exotic $\phi \pi^0$ State With a Mass of About 1.5-{GeV}

Bityukov, S.I. ; Viktorov, V.A. ; Vishnevsky, N.K. ; et al.
JETP Lett. 42 (1985) 384-387, 1985.
Inspire Record 229516 DOI 10.17182/hepdata.16883

None

1 data table

No description provided.