Date

DIFFRACTION PROCESSES IN SIX BODY EXCLUSIVE K+ P REACTIONS AT 32-GEV/C. (IN RUSSIAN)

Azhinenko, I.V. ; Amaglobeli, N.S. ; Vorobev, A.P. ; et al.
Sov.J.Nucl.Phys. 46 (1987) 464, 1987.
Inspire Record 240069 DOI 10.17182/hepdata.10330

None

31 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables match query

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Two-particle correlations on transverse rapidity in Au+Au collisions at $\sqrt {s_{NN}}=200$ GeV at STAR

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 106 (2022) 044906, 2022.
Inspire Record 2071694 DOI 10.17182/hepdata.129290

Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.

137 data tables match query

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%.

More…

Search for the Chiral Magnetic Effect in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV with the STAR forward Event Plane Detectors

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Lett.B 839 (2023) 137779, 2023.
Inspire Record 2148920 DOI 10.17182/hepdata.133216

A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity $|\eta|<1.0$ and at forward rapidity $2.1 < |\eta|<5.1$. We compare the results based on the directed flow plane ($\Psi_1$) at forward rapidity and the elliptic flow plane ($\Psi_2$) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to $\Psi_1$ than to $\Psi_2$, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.

15 data tables match query

This dataset corresponds to Figure 2, the v2 value estimated by tpc (\Psi_2) in the paper

This dataset corresponds to Figure 2, the v2 value estimated by epd (\Psi_2) in the paper

This dataset corresponds to Figure 2, the v2 value estimated by epd (\Psi_1) in the paper

More…

Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 804 (2020) 135377, 2020.
Inspire Record 1759860 DOI 10.17182/hepdata.93923

The differential invariant yield as a function of transverse momentum ($p_\mathrm{T}$) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0-10%), semi-central (30-50%) and peripheral (60-80%) lead-lead (Pb-Pb) collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\text{ TeV}$ in the $p_{\mathrm{T}}$ intervals 0.5-26 GeV/$c$ (0-10% and 30-50%) and 0.5-10 GeV/$c$ (60-80%). The production cross section in proton-proton (pp) collisions at $\sqrt{s}=5.02$ TeV was measured as well in $0.5<p_\mathrm{T}<10$ GeV/$c$ and it lies close to the upper band of perturbative QCD calculation uncertainties up to $p_\mathrm{T}=5$ GeV/$c$ and close to the mean value for larger $p_\mathrm{T}$. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon-nucleon collisions is evaluated by measuring the nuclear modification factor $R_{\mathrm{AA}}$. The measurement of the $R_{\mathrm{AA}}$ in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The $R_{\mathrm{AA}}$ shows a suppression with respect to unity at intermediate $p_\mathrm{T}$, which increases while moving towards more central collisions. Moreover, the measured $R_{\mathrm{AA}}$ is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low $p_\mathrm{T}$ in heavy-ion collisions at LHC.

7 data tables match query

HFe cross section in pp

HFe cross section in Pb-Pb, 0-10 centrality

HFe cross section in Pb-Pb, 30-50 centrality

More…

Vector Meson Production by Polarized Photons at 2.8-GeV, 4.7-GeV, and 9.3-GeV

Ballam, Joseph ; Chadwick, G.B. ; Eisenberg, Y. ; et al.
Phys.Rev.D 7 (1973) 3150, 1973.
Inspire Record 73602 DOI 10.17182/hepdata.43496

We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.

47 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of $W^{\pm}$ and $Z$-boson production cross sections in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 759 (2016) 601-621, 2016.
Inspire Record 1436497 DOI 10.17182/hepdata.73611

Measurements of the $W^{\pm} \rightarrow \ell^{\pm} \nu$ and $Z \rightarrow \ell^+ \ell^-$ production cross sections (where $\ell^{\pm}=e^{\pm},\mu^{\pm}$) in proton-proton collisions at $\sqrt{s}=13$ TeV are presented using data recorded by the ATLAS experiment at the Large Hadron Collider, corresponding to a total integrated luminosity of 81 pb$^{-1}$ The total inclusive $W^{\pm}$-boson production cross sections times the single-lepton-flavour branching ratios are $\sigma_{W^+}^{tot}= 11.83 \pm 0.02 (stat) \pm 0.32 (sys) \pm 0.25 (lumi)$ nb and $\sigma_{W^-}^{tot} = 8.79 \pm 0.02 (stat) \pm 0.24 (sys) \pm 0.18 (lumi)$ nb for $W^+$ and $W^-$, respectively. The total inclusive $Z$-boson production cross section times leptonic branching ratio, within the invariant mass window $66 < m_{\ell\ell} < 116$ GeV, is $\sigma_{Z}^{tot} = 1.981 \pm 0.007 (stat) \pm 0.038 (sys) \pm 0.042 (lumi)$ nb. The $W^+$, $W^-$, and $Z$-boson production cross sections and cross-section ratios within a fiducial region defined by the detector acceptance are also measured. The cross-section ratios benefit from significant cancellation of experimental uncertainties, resulting in $\sigma_{W^+}^{fid}/\sigma_{W^-}^{fid} = 1.295 \pm 0.003 (stat) \pm 0.010 (sys)$ and $\sigma_{W^{\pm}}^{fid}/\sigma_{Z}^{fid} = 10.31 \pm 0.04 (stat) \pm 0.20 (sys)$. Theoretical predictions, based on calculations accurate to next-to-next-to-leading order for quantum chromodynamics and to next-to-leading order for electroweak processes and which employ different parton distribution function sets, are compared to these measurements.

24 data tables match query

Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.

Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.

Measured fiducial cross section times leptonic branching ratio for Z/gamma* production in the Z/gamma* -> e+e- final state.

More…

Forward $J/\psi$ production in U$+$U collisions at $\sqrt{s_{NN}}$=193 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034903, 2016.
Inspire Record 1393789 DOI 10.17182/hepdata.144239

The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.

5 data tables match query

Centrality parameters $N_{part}$ and $N_{coll}$ in U+U and Au+Au collisions, estimated using the Glauber model.

The nuclear-modification factor, $R_{AA}$, measured as a function of collision centrality ($N_{part}$) for $J/\psi$ at forward rapidity in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV.

Invariant yield measured as a function of collision centrality for $J/\psi$ at forward rapidity for U+U and Au+Au collisions.

More…

K$^{*}(892)^{0}$ and $\phi(1020)$ meson production at high transverse momentum in pp and Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 95 (2017) 064606, 2017.
Inspire Record 1511864 DOI 10.17182/hepdata.77995

The production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum ($p_{\mathrm{T}}$) spectra have been measured for K$^{*}(892)^{0}$ and $\phi(1020)$ mesons via their hadronic decay channels for $p_{\mathrm{T}}$ up to 20 GeV/$c$. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K$^{*}(892)^{0}$/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K$^{*}(892)^{0}$ yield at low $p_{\mathrm{T}}$ due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the $p_{\mathrm{T}}$ dependent $\phi(1020)/\pi$ and K$^{*}(892)^{0}$/$\pi$ ratios show an enhancement over pp collisions for $p_{\mathrm{T}}$ $\sim$3 GeV/$c$, consistent with previous observations of strong radial flow. At high $p_{\mathrm{T}}$, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons is suppressed for $p_{\mathrm{T}}> 8$ GeV/$c$. This suppression is similar to that of charged pions, kaons and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector.

37 data tables match query

Invariant yield of K$^{*0}$ meson normalized to the number of inelastic pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.

Invariant yield of $\phi$ meson normalized to the number of inelastic pp collisions at $\sqrt{s}=2.76~{\rm TeV}$.

Invariant yield of K$^{*0}$ meson for 0-5$\%$ centrality in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$.

More…

Version 2
Interpreting Reactor Antineutrino Anomalies with STEREO data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Nature 613 (2023) 257-261, 2023.
Inspire Record 2165649 DOI 10.17182/hepdata.132368

Anomalies in past neutrino measurements have led to the discovery that these particles have non-zero mass and oscillate between their three flavors when they propagate. In the 2010's, similar anomalies observed in the antineutrino spectra emitted by nuclear reactors have triggered the hypothesis of the existence of a supplementary neutrino state that would be sterile i.e. not interacting via the weak interaction. The STEREO experiment was designed to study this scientific case that would potentially extend the Standard Model of Particle Physics. Here we present a complete study based on our full set of data with significantly improved sensitivity. Installed at the ILL (Institut Laue Langevin) research reactor, STEREO has accurately measured the antineutrino energy spectrum associated to the fission of 235U. This measurement confirms the anomalies whereas, thanks to the segmentation of the STEREO detector and its very short mean distance to the core (10~m), the same data reject the hypothesis of a light sterile neutrino. Such a direct measurement of the antineutrino energy spectrum suggests instead that biases in the nuclear experimental data used for the predictions are at the origin of the anomalies. Our result supports the neutrino content of the Standard Model and establishes a new reference for the 235U antineutrino energy spectrum. We anticipate that this result will allow to progress towards finer tests of the fundamental properties of neutrinos but also to benchmark models and nuclear data of interest for reactor physics and for observations of astrophysical or geo-neutrinos.

30 data tables match query

12B prediction used for the control of the energy scale. The three most intense beta decay branches of 12B have been taken into account, covering 99.94% of the total decay rate. The corresponding spectra are given in bins of 50 keV, normalized to their respective branching ratio. The [no rad. corr] notation stands for the fact that we didn't include the radiative corrections in our nominal simulation, as all radiated photons should be absorbed in the STEREO target volume. However the full effect of these corrections is included in the uncertainty of the predicted spectrum. It can be deduced from the comparison with the full calculation of the beta branches given here as well.

12B prediction used for the control of the energy scale. The three most intense beta decay branches of 12B have been taken into account, covering 99.94% of the total decay rate. The corresponding spectra are given in bins of 50 keV, normalized to their respective branching ratio. The [no rad. corr] notation stands for the fact that we didn't include the radiative corrections in our nominal simulation, as all radiated photons should be absorbed in the STEREO target volume. However the full effect of these corrections is included in the uncertainty of the predicted spectrum. It can be deduced from the comparison with the full calculation of the beta branches given here as well.

STEREO IBD Spectrum for phase-II and phase-III. The spectra are given in nu/day and normalized to reactor power in cm2/fission/MeV with 22 250keV-wide measured-energy bins, ranging from 1.625MeV (lower edge of lowest bin) to 7.125 MeV (upper edge of highest bin). The normalized rates (cm2/fission/MeV) are split between U5 and non-U5 components (Aluminium and Off-Equilibrium corrections).

More…