Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.
Normalized dijet angular distribution for the dijet mass range > 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1800 to 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1400 to 1800 GeV.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 35 inverse picobarns of analysed data. Gluino masses below 500 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion increases to 870 GeV for equal mass squarks and gluinos. In MSUGRA/CMSSM models with tan(beta)= 3, A_0=0 and mu>0, squarks and gluinos of equal mass are excluded below 775 GeV. These are the most stringent limits to date.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the two highest pT jets) for events with at least 2 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the three highest pT jets) for events with at least 3 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
The distribution in MT2 for events with at least 2 jets after the application of all selection criteria (other than the MT2 cut itself). The table shows the number of observed data points per 40 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma uncertainty band error limits.
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 56 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 84 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 120 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated. Note that these two systematic errors are different for the final point.
Azimuthal decorrelations between the two central jets with the largest transverse momenta are sensitive to the dynamics of events with multiple jets. We present a measurement of the normalized differential cross section based on the full dataset (L=36/pb) acquired by the ATLAS detector during the 2010 sqrt(s)=7 TeV proton-proton run of the LHC. The measured distributions include jets with transverse momenta up to 1.3 TeV, probing perturbative QCD in a high energy regime.
Distribution for the maxPT jet (P=3) from 110 to 160 GeV.
Distribution for the maxPT jet (P=3) from 160 to 210 GeV.
Distribution for the maxPT jet (P=3) from 210 to 260 GeV.
Hadronic event shapes have been measured in proton-proton collisions at sqrt(s)=7 TeV, with a data sample collected with the CMS detector at the LHC. The sample corresponds to an integrated luminosity of 3.2 inverse picobarns. Event-shape distributions, corrected for detector response, are compared with five models of QCD multijet production.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central thrust minor for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 125 to 200 GeV/c,.
Measurements of the total and differential cross sections with respect to transverse momentum and rapidity for B+ mesons produced in pp collisions at sqrt(s) = 7 TeV are presented. The data correspond to an integrated luminosity of 5.8 inverse picobarns collected by the CMS experiment operating at the LHC. The exclusive decay B+ to J/psi K+, with the J/psi decaying to an oppositely charged muon pair, is used to detect B+ mesons and to measure the production cross section as a function of the transverse momentum and rapidity of the B. The total cross section for p_t(B) > 5 GeV and |y(B)| < 2.4 is measured to be 28.1 +/- 2.4 +/- 2.0 +/- 3.1 microbarns, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.
Total integrated cross section in the given kinematic range. The (sys) error includes the uncertainty in the branching fraction.
Measured differential cross section as a function of the transverse momentum of the B+ particle.
Measured differential cross section as a function of the rapidity of the B+ particle.
Measurements of dijet azimuthal decorrelations in pp collisions at sqrt(s) = 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2.9 inverse picobarns. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distributions are found to be sensitive to initial-state gluon radiation.
Normalized Delta_Phi distributions for events with a maximum jet pT between 80 and 110 GeV.
Normalized Delta_Phi distributions for events with a maximum jet pT between 110 and 140 GeV.
Normalized Delta_Phi distributions for events with a maximum jet pT between 140 and 200 GeV.
A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.
Total inclusive cross section in the visible kinematic range.
Muon transverse momentum differential distibution.
Muon pseudorapidity differential distibution.
Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.
The double ratio R_double at 900 and 7000 GeV.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.