Charged jet cross section and fragmentation in proton-proton collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.D 99 (2019) 012016, 2019.
Inspire Record 1693308 DOI 10.17182/hepdata.86229

We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=$ 7 TeV. Jets with pseudo-rapidity $\left| \eta \right| < {\rm 0.5}$ are reconstructed from charged particles using the anti-$k_{\rm T}$ jet finding algorithm with a resolution parameter $R$ = 0.4. The jet cross section is measured in the transverse momentum interval 5 $\leq p_{\rm T}^{\rm ch \; jet} <$ 100 GeV/$c$. Jet fragmentation is studied measuring the scaled transverse momentum spectra of the charged constituents of jets in four intervals of jet transverse momentum between 5 GeV/$c$ and 30 GeV/$c$. The measurements are compared to calculations from the PYTHIA model as well as next-to-leading order perturbative QCD calculations with POWHEG + PYTHIA8. The charged jet cross section is described by POWHEG for the entire measured range of $p_{\rm T}^{\rm ch \; jet}$. For $p_{\rm T}^{\rm ch \; jet}$ $>$ 40 GeV/$c$, the PYTHIA calculations also agree with the measured charged jet cross section. PYTHIA6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for PYTHIA8.

4 data tables

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross section ratios for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV for $5<p_{T}^{ch jet}<10$ GeV/$c$.

Measured charged jet differential cross section ratios for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV for $10<p_{T}^{ch jet}<15$ GeV/$c$.

More…

Dielectron production in proton-proton collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 09 (2018) 064, 2018.
Inspire Record 1672792 DOI 10.17182/hepdata.83913

The first measurement of e$^+$e$^-$ pair production at mid-rapidity ($|\eta_{{\rm e}}|$ $<$ 0.8) in pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC is presented. The dielectron production is studied as a function of the invariant mass ($m_{\rm ee}$ $<$ 3.3 GeV/$c^{2}$), the pair transverse momentum ($p_{\rm T,ee}$ $<$ 8 GeV/$c$), and the pair transverse impact parameter (DCA$_{{\rm ee}}$), i.e., the average distance of closest approach of the reconstructed electron and positron tracks to the collision vertex, normalised to its resolution. The results are compared with the expectations from a cocktail of known hadronic sources and are well described when PYTHIA is used to generate the heavy-flavour contributions. In the low-mass region (0.14 $<$ $m_{\rm ee}$ $<$ 1.1 GeV/$c^{2}$), prompt and non-prompt e$^+$e$^-$ sources can be separated via the DCA$_{\rm ee}$. In the intermediate-mass region (1.1 $<$ $m_{\rm ee}$ $<$ 2.7 GeV/$c^{2}$), a double-differential fit to the data in $m_{\rm ee}$ and $p_{\rm T,ee}$ and a fit of the DCA$_{\rm ee}$ distribution allow the total ${\rm c\overline c}$ and ${\rm b\overline b}$ cross sections to be extracted. Two different event generators, PYTHIA and POWHEG, can reproduce the shape of the two-dimensional $m_{\rm ee}$ and $p_{\rm T,ee}$ spectra, as well as the shape of the DCA$_{\rm ee}$ distribution, reasonably well. However, differences in the ${\rm c\overline c}$ and ${\rm b\overline b}$ cross sections are observed when using the generators to extrapolate to full phase space. Finally, the ratio of inclusive to decay photons is studied via the measurement of virtual direct photons in the transverse-momentum range 1 $<$ $p_{\rm T}$ $<$ 8 GeV/$c$. This is found to be unity within the statistical and systematic uncertainties and consistent with expectations from next-to-leading order perturbative quantum chromodynamic calculations.

11 data tables

Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $m_{\rm ee}$.

Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $p_{\rm T,ee}$ for $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.

Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 7 TeV in the ALICE acceptance as a function of $\rm DCA_{ee}$ for 0.08 < $m_{\rm ee}$ < 0.14 GeV/$c^{2}$.

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

First measurement of $\Xi_{\rm c}^0$ production in pp collisions at $\mathbf{\sqrt{s}}$ = 7 TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 781 (2018) 8-19, 2018.
Inspire Record 1642729 DOI 10.17182/hepdata.83354

The production of the charm-strange baryon $\Xi_{\rm c}^0$ is measured for the first time at the LHC via its semileptonic decay into e$^+\Xi^-\nu_{\rm e}$ in pp collisions at $\sqrt{s}=7$ TeV with the ALICE detector. The transverse momentum ($p_{\rm T}$) differential cross section multiplied by the branching ratio is presented in the interval 1 $<$ $p_{\rm T}$ $<$ 8 GeV/$c$ at mid-rapidity, $|y|$ $<$ 0.5. The transverse momentum dependence of the $\Xi_{\rm c}^0$ baryon production relative to the D$^0$ meson production is compared to predictions of event generators with various tunes of the hadronisation mechanism, which are found to underestimate the measured cross-section ratio.

2 data tables

Inclusive $\Xi_{\rm c}^{0}$ $p_{\rm T}$ differential cross section multiplied by the branching ratio into the semileptonic decay for $|y|<0.5$.

Ratio of the $p_{\rm T}$ differential cross sections of $\Xi_{\rm c}^{0}$ baryons (multiplied by the branching ratio into the semileptonic decay) and D$^{0}$ mesons for $|y|<0.5$.


Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\mathbf{\sqrt{{\textit s}}}$ = 0.9, 2.76 and 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 97 (2018) 024615, 2018.
Inspire Record 1625294 DOI 10.17182/hepdata.81951

Invariant differential yields of deuterons and anti-deuterons in pp collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV and the yields of tritons, $^{3}$He nuclei and their anti-nuclei at $\sqrt{s}$ = 7 TeV have been measured with the ALICE detector at the LHC. The measurements cover a wide transverse momentum ($p_{\text{T}}$) range in the rapidity interval $|y|<0.5$, extending both the energy and the $p_{\text{T}}$ reach of previous measurements up to 3 GeV/$c$ for $A=2$ and 6 GeV/$c$ for $A=3$. The coalescence parameters of (anti-)deuterons and $^{3}\overline{\text{He}}$ nuclei exhibit an increasing trend with $p_{\text{T}}$ and are found to be compatible with measurements in pA collisions at low $p_{\text{T}}$ and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti-)nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.

11 data tables

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 0.9 TeV. The uncertainties of $_{-0.8}^{+2.2}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 2.76 TeV. The uncertainties of $_{-2.8}^{+5.2}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

Invariant differential yield of deuterons and antideuterons in inelastic pp collisions at $\sqrt{s}$ = 7 TeV. The uncertainties of $_{-2.0}^{+5.0}$% due to the extrapolation to inelastic pp collisions are not included in the systematic uncertainties.

More…

$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

7 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.

More…

Measurement of D-meson production at mid-rapidity in pp collisions at $\mathbf{\sqrt{s}=7}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 550, 2017.
Inspire Record 1511870 DOI 10.17182/hepdata.78907

The production cross sections of the prompt charmed mesons ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$ were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy $\sqrt{s}=7$ TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays ${\rm D}^0 \to {\rm K}^-\pi^+$, ${\rm D}^+\to {\rm K}^-\pi^+\pi^+$, ${\rm D}^{*+} \to {\rm D}^0 \pi^+$, ${\rm D_s^{+}\to \phi\pi^+\to K^-K^+\pi^+}$, and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum ($p_{\rm T}$) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total $\rm c\overline c$ production cross section is likewise improved. The measured $p_{\rm T}$-differential cross sections are compared with the results of three perturbative QCD calculations.

16 data tables

$p_{\rm T}$-differential cross section of prompt $\rm{D}^{0}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{0}\rightarrow K\pi$ : 0.0393.

$p_{\rm T}$-differential cross section of prompt $\rm{D^{+}}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm D^{+-}\rightarrow K{\rm{\pi}}{\rm{\pi}}$ : 0.0946.

$p_{\rm T}$-differential cross section of prompt $\rm D^{*}$ mesons in pp collisions at $\sqrt{s_{\rm{NN}}}$=7 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{*+}\rightarrow \rm{D}^{0}\pi\rightarrow K\pi\pi$ : 0.0266.

More…

Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14 data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

More…