Version 2
Multi-jet cross sections in charged current e+-p scattering at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 032004, 2008.
Inspire Record 780108 DOI 10.17182/hepdata.50599

Jet cross sections were measured in charged current deep inelastic e+-p scattering at high boson virtualities Q^2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb^-1. Differential cross sections are presented for inclusive-jet production as functions of Q^2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e+-p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits.

6 data tables match query

Differential polarized inclusive jet cross sections as a function of jet transverse energy.

Differential polarized inclusive jet cross sections as a function of jet transverse energy.

Differential unpolarized cross section for single jet production as a function of the jet transverse energy.

More…

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

1 data table match query

$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.


Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

10 data tables match query

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Expected and observed unitarised $95\%$ confidence intervals for the coupling parameter $f_{T,8}/\Lambda^{4}$ in the clipping energy range between 1.1 and 5 TeV. The non-unitarised limits ($E_c = \infty$) are also shown. All parameter values outside of the stated range are excluded at the chosen confidence level.

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

1 data table match query

Systematic uncertainties in the double differential cross-sections in interval regions of $y^{Z}$ and $p_{T}^{Z}$, presented in percentage. The contributions from efficiency (Eff), background (BKG), final state radiation (FSR), closure test (Closure), and alignment and calibration (Alignment) are shown.


Version 2
Measurement of Higgs boson decay into $b$-quarks in associated production with a top-quark pair in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 097, 2022.
Inspire Record 1967501 DOI 10.17182/hepdata.114360

The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a $b$-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb$^{-1}$, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of $\sqrt{s}=13$ TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is $0.35^{+0.36}_{-0.34}$. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.

1 data table match query

The ratios $S/B$ (black solid line, referring to the vertical axis on the left) and $S/\sqrt{B}$ (red dashed line, referring to the vertical axis on the right) for each category in the inclusive analysis in the dilepton channel (left) and in the single-lepton channels (right), where $S$ ($B$) is the number of selected signal (background) events predicted by the simulation and normalised to a luminosity of 139 fb$^{-1}$ .


Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

78 data tables match query

Measured fiducial differential cross sections for the Z boson p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the leading jet p$_{\mathrm{T}}$ in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial differential cross sections for the jet multiplicity in Z($\to \ell^{+} \ell^{-}$) + high p$_{\mathrm{T}}$ jets events. The statistical, systematic, and luminosity uncertainties are given.

More…

Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

2 data tables match query

Differential cross section for D*+- production with dijets as a function of M(C=JET2).

Differential cross section for D*+- production with dijets as a function of M(C=JET2).


Measurements of Z bosons plus jets using variables sensitive to double parton scattering in pp collisions at 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 10 (2021) 176, 2021.
Inspire Record 1866118 DOI 10.17182/hepdata.110665

Double-parton scattering is investigated using events with a Z boson and jets. The Z boson is reconstructed using only the dimuon channel. The measurements are performed with proton-proton collision data recorded by the CMS experiment at the LHC at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$ collected in the year 2016. Differential cross sections of Z + $\geq$ 1 jet and Z + $\geq$ 2 jets are measured with transverse momentum of the jets above 20 GeV and pseudorapidity $|\eta|$$\lt$ 2.4. Several distributions with sensitivity to double-parton scattering effects are measured as functions of the angle and the transverse momentum imbalance between the Z boson and the jets. The measured distributions are compared with predictions from several event generators with different hadronization models and different parameter settings for multiparton interactions. The measured distributions show a dependence on the hadronization and multiparton interaction simulation parameters, and are important input for future improvements of the simulations.

1 data table match query

Correlation matrix for transverse momentum imbalance between Z boson and the leading jet for Z+ ≥ 1 jet events (for normalized differential cross section measurements).


Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

2 data tables match query

Detailed list of the contribution of each source of uncertainty to the total relative uncertainty on the measured $\dfrac{\mathrm{d}\sigma}{\mathrm{d}|y(t)|}$ distribution given in percent for each bin. The list includes only those uncertainties that contribute with more than $1\%$. The following uncertainties contribute to the total uncertainty with less than $1\%$ to each bin content$:$ JES detector, JES statistical, JES physics modeling, JES mixed detector and modeling, JES close-by jets, JES pileup, JES flavor composition, JES flavor response, jet-vertex fraction, $b/\bar{b}$ acceptance, $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling, $W+$ jets shape variation, $t \bar{t}$ generator, $t \bar{t}$ ISR/FSR, and unfolding. In cases when the uncertainty is report to be "$<1\%$" in the table of the paper the uncertainty is approximated by a value of $0.5\%$.

Detailed list of the contribution of each source of uncertainty to the total relative uncertainty on the measured $\dfrac{1}{\sigma}\dfrac{\mathrm{d}\sigma}{\mathrm{d}|y(\bar t)|}$ distribution given in percent for each bin. The list includes only those uncertainties that contribute with more than $1\%$. Sign switches within one uncertainty are denoted with $\mp$ and $\pm$. The following uncertainties contribute to the total uncertainty with less than $1\%$ to each bin content $:$ JES detector, JES statistical, JES physics modeling, JES mixed detector and modeling, JES close-by jets, JES pileup, JES flavor composition, JES flavor response, b-JES, jet energy resolution, jet-vertex fraction, $b/\bar{b}$ acceptance, $b-$tagging efficiency, $c-$ tagging efficiency, mistag efficiency, $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling, lepton uncertainties, $W+$ jets shape variation, $t \bar{t}$ generator, $t \bar{t}$ ISR/FSR, and unfolding. In cases when the uncertainty is report to be "$<1\%$" in the table of the paper the uncertainty is approximated by a value of $0.5\%$.


Measurement of Exclusive $\pi^{+}\pi^{-}$ and $\rho^0$ Meson Photoproduction at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 80 (2020) 1189, 2020.
Inspire Record 1798511 DOI 10.17182/hepdata.102569

Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.

16 data tables match query

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, in bins of the photon-proton energy $W$. The cross section is defined as the integral of the relativistic Breit Wigner resonance in the dipion mass over the range $2m_\pi<m_{\pi\pi}<1.53$ GeV. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons in bins of the photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.

Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction cross sections off protons as a function of energy. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.

More…

Measurement of the four-lepton invariant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 048, 2019.
Inspire Record 1720442 DOI 10.17182/hepdata.84818

A measurement of the four-lepton invariant mass spectrum is made with the ATLAS detector, using an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider. The differential cross-section is measured for events containing two same-flavour opposite-sign lepton pairs. It exhibits a rich structure, with different mass regions dominated in the Standard Model by single $Z$ boson production, Higgs boson production, and $Z$ boson pair production, and non-negligible interference effects at high invariant masses. The measurement is compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. These calculations are used to interpret the data in terms of $gg\rightarrow ZZ \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ subprocesses, and to place constraints on a possible contribution from physics beyond the Standard Model.

1 data table match query

Statistical covariance matrix for the differential $m_{4l}$-$y_{4l}$ distribution. <br><br> Bins labelled 1-9 correspond to the 0.0$< y_{4l} < $0.4 bin with $m_{4l}$ values as listed in Table 6.<br> Bins labelled 10-18 correspond to the 0.4$< y_{4l} <$0.8 bin with $m_{4l}$ values as listed in Table 7.<br> Bins labelled 19-26 correspond to the 0.8$< y_{4l} <$1.2 bin with $m_{4l}$ values as listed in Table 8.<br> Bins labelled 27-34 correspond to the 1.2$< y_{4l} <$2.5 bin with $m_{4l}$ values as listed in Table 9.


Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 538, 2016.
Inspire Record 1404878 DOI 10.17182/hepdata.84154

Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.

1 data table match query

Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.


Measurements of differential cross sections of top quark pair production in association with jets in ${pp}$ collisions at $\sqrt{s}=13$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2018) 159, 2018.
Inspire Record 1656578 DOI 10.17182/hepdata.81950

Measurements of differential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from $pp$ collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

1 data table match query

Statistical correlation matrix between $p_{T}^{t\bar{t}}$ in the 4-jet exclusive configuration and $p_{T}^{t,had}$ in the 6-jet inclusive configuration, obtained through the Bootstrap Method.


Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

2 data tables match query

Measured differential cross section with associated uncertainties as a function of cosine of the decay angle in the Collins-Soper frame in bins of diphoton transverse momentum. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of cosine of the decay angle in the Collins-Soper frame in bins of diphoton transverse momentum. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.


Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}$=13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 191, 2017.
Inspire Record 1614149 DOI 10.17182/hepdata.80041

Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.

2 data tables match query

Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.

Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.


Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at $\sqrt{s}=8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 295-317, 2018.
Inspire Record 1632756 DOI 10.17182/hepdata.79163

This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb$^{-1}$. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: $|\eta^\gamma|<1.37$ and $1.56<|\eta^\gamma|<2.37$. The measurement covers photon transverse energies $25 < E_\textrm{T}^\gamma<400$ GeV and $25 < E_\textrm{T}^\gamma<350$ GeV respectively for the two $|\eta^\gamma|$ regions. For each jet flavour, the ratio of the cross sections in the two $|\eta^\gamma|$ regions is also measured. The measurement is corrected for detector effects and compared to leading-order and next-to-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central $\gamma+b$ measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions.

4 data tables match query

Signed shifts of the individual systematic uncertainties on the $\gamma+b$ cross section for $|\eta^\gamma|<1.37$. The numbers after the name of the uncertainty source refer to the individual component in that uncertainty. Each bin of the MC statistical uncertainty is independent of any other bin. The first four components of the photon energy scale uncertainty are specific to this $|\eta^\gamma|$ region and are independent of the components in the other region. The region is indicated as part of their name to indicate the independence between the $|\eta^\gamma|$ regions. The uncertainties on the prompt photon modelling, non-perturbative QCD models and particle-level migration effects are only varied once and not up and down by their nature, but are symmetrised for the final results. Only uncertainties which have at least a 1% variation in at least one bin of the $\gamma+b$ and $\gamma+c$ cross section measurements, including the ratios, are listed. The others are summed in quadrature and listed as a single entry.

Signed shifts of the individual systematic uncertainties on the $\gamma+b$ cross section for $1.56<|\eta^\gamma|<2.37$. The numbers after the name of the uncertainty source refer to the individual component in that uncertainty. Each bin of the MC statistical uncertainty is independent of any other bin. The first four components of the photon energy scale uncertainty are specific to this $|\eta^\gamma|$ region and are independent of the components in the other region. The region is indicated as part of their name to indicate the independence between the $|\eta^\gamma|$ regions. The uncertainties on the prompt photon modelling, non-perturbative QCD models and particle-level migration effects are only varied once and not up and down by their nature, but are symmetrised for the final results. Only uncertainties which have at least a 1% variation in at least one bin of the $\gamma+b$ and $\gamma+c$ cross section measurements, including the ratios, are listed. The others are summed in quadrature and listed as a single entry.

Signed shifts of the individual systematic uncertainties on the $\gamma+c$ cross section for $|\eta^\gamma|<1.37$. The numbers after the name of the uncertainty source refer to the individual component in that uncertainty. Each bin of the MC statistical uncertainty is independent of any other bin. The first four components of the photon energy scale uncertainty are specific to this $|\eta^\gamma|$ region and are independent of the components in the other region. The region is indicated as part of their name to indicate the independence between the $|\eta^\gamma|$ regions. The uncertainties on the prompt photon modelling, non-perturbative QCD models and particle-level migration effects are only varied once and not up and down by their nature, but are symmetrised for the final results. Only uncertainties which have at least a 1% variation in at least one bin of the $\gamma+b$ and $\gamma+c$ cross section measurements, including the ratios, are listed. The others are summed in quadrature and listed as a single entry.

More…

Version 2
Measurements of the production cross section of a $Z$ boson in association with jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 77 (2017) 361, 2017.
Inspire Record 1514251 DOI 10.17182/hepdata.76542

Measurements of the production cross section of a $Z$ boson in association with jets in proton-proton collisions at $\sqrt{s} = 13$ TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb$^{-1}$ collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a $Z$ boson decaying to electrons or muons and produced in association with up to seven jets with $p_T > 30$ GeV and $|y| <2.5$. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for up to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.

2 data tables match query

Measured fiducial cross sections for the leading jet $p_{\text{T}}$ in $Z/\gamma^*(\rightarrow ee)$+>=4 jet events. The statistical, systematic, and luminosity uncertainties are given.

Measured fiducial cross sections for the leading jet $p_{\text{T}}$ in $Z/\gamma^*(\rightarrow ee)$+>=4 jet events. The statistical, systematic, and luminosity uncertainties are given.


Hyperon Production in $e^+ e^-$ Annihilation at 10-{GeV} Center-of-mass Energy

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Bockmann, P. ; et al.
Z.Phys.C 39 (1988) 177, 1988.
Inspire Record 251097 DOI 10.17182/hepdata.1697

The production cross sections for the Λ, Σ0, Ξ−, Σ0 (1385), Ξ0 (1530) and Ω− hyperons have been measured, both in the continuum and in direct ϒ decays. Baryon rates in direct ϒ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed.

1 data table match query

No description provided.


Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

1 data table match query

The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 24 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Stat2: Alignment uncertainty from the choice of a reference station -- Dist: Alignment uncertainty related to the distance calibration between the upper and lower detectors -- Leff: Alignment uncertainty related to effective lever arm used in the alignment optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 2.3%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) A small difference in the statistical uncertainties give here compared to the published version is related to insignificant rounding issues.


Measurement of isolated photons accompanied by jets in deep inelastic ep scattering

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 715 (2012) 88-97, 2012.
Inspire Record 1117891 DOI 10.17182/hepdata.60574

The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.

2 data tables match query

The measured differential cross section as a function of the transverse energy of the photon.

The measured differential cross section as a function of the transverse energy of the jet.


Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 70 (2010) 965-982, 2010.
Inspire Record 875006 DOI 10.17182/hepdata.71338

Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.

1 data table match query

The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.


An Improved Measurement of Electroweak Couplings From $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \mu^+ \mu^-$

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 13, 1984.
Inspire Record 193787 DOI 10.17182/hepdata.2111

We present an analysis of electroweak leptonic couplings from high statistics experiments on Bhabha scattering and μ pair production at an energy of 34.5 GeV. The forward-backward charge asymmetry of the μ pairs was measured to be −0.098±0.023±0.005. The data were found to agree well with the standard theory of electroweak interaction giving sin2θW=0.27±0.07. The leptonic weak couplings were determined to begv=0.000±0.170 andgA=−0.481±0.055. The data were also used to investigate a class of composite models for leptons.

2 data tables match query

No description provided.

No description provided.


pi + /- p Backward Scattering Between 1.5 and 3.0 BeV/c

Carroll, A.S. ; Fischer, J. ; Lundby, A. ; et al.
Phys.Rev.Lett. 20 (1968) 607-609, 1968.
Inspire Record 54465 DOI 10.17182/hepdata.897

None

1 data table match query

No description provided.


Photoproduction of neutral pions from neutrons between 500 and 900 mev

Hemmi, Y. ; Inagaki, T. ; Kikuchi, R. ; et al.
Phys.Lett.B 32 (1970) 137-140, 1970.
Inspire Record 63812 DOI 10.17182/hepdata.28720

The differential cross sections for the γ + n → π O + n reaction have been measured at the photon energies of 500–900 MeV. The ratios, R oo = [ d δ d Ω(γ n → π o n ) ] [ d δ d Ω(γ p → π o p ) ] , have been obtained at the c.m. pion angles of 60 O , 90 O , 105 O , 120 O , and 140 O .

1 data table match query

No description provided.


Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2466, 2013.
Inspire Record 1228913 DOI 10.17182/hepdata.66507

Cross sections for elastic and proton-dissociative photoproduction of J/psi mesons are measured with the H1 detector in positron-proton collisions at HERA. The data were collected at $ep$ centre-of-mass energies sqrt{s} approx 318 GeV and sqrt{s} approx 225 GeV, corresponding to integrated luminosities of L = 130 pb^{-1} and L = 10.8 pb^{-1}, respectively. The cross sections are measured as a function of the photon-proton centre-of-mass energy in the range 25< Wgp < 110 GeV. Differential cross sections $\mathrm{d}\sigma / \mathrm{d}t$, where $t$ is the squared four-momentum transfer at the proton vertex, are measured in the range $|t| < 1.2 \, \gevsq$ for the elastic process and $|t| < 8 \, \gevsq$ for proton dissociation. The results are compared to other measurements. The $\Wgp$ and $t$-dependences are parametrised using phenomenological fits.

8 data tables match query

The elastic photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The proton-dissociative photoproduction cross section derived from the high-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

The elastic photoproduction cross section derived from the low-energy data set as a function of the photon-proton centre-of-mass energy W. PHI_T is the transeverse polarised photon flux.

More…