To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.
The $c_{k}$ for the 0.5-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 0.5-5 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The $c_{k}$ for the 1-2 GeV $p_{T}$ range as a function of event multiplicity $N_{ch}$ in Pb+Pb collisions.
The production cross-sections for $W^{\pm}$ and $Z$ bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}=2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell $ are used, where $\ell$ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: \begin{eqnarray} \sigma^{\text{tot}}_{W^{+}\rightarrow \ell \nu}& = & 2312 \pm 26\ (\text{stat.})\ \pm 27\ (\text{syst.}) \pm 72\ (\text{lumi.}) \pm 30\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{W^{-}\rightarrow \ell \nu}& = & 1399 \pm 21\ (\text{stat.})\ \pm 17\ (\text{syst.}) \pm 43\ (\text{lumi.}) \pm 21\ (\text{extr.})\text{pb} \nonumber, \\ \sigma^{\text{tot}}_{Z \rightarrow \ell \ell}& = & 323.4 \pm 9.8\ (\text{stat.}) \pm 5.0\ (\text{syst.}) \pm 10.0\ (\text{lumi.}) \pm 5.5 (\text{extr.}) \text{pb} \nonumber. \end{eqnarray} Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> mu+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nu final state.
This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV $
$\langle n_{ch} \rangle$, forward jet.
$\langle n_{ch} \rangle$, central jet.
$\langle \zeta \rangle$, forward jet.
Narrow resonances decaying into $WW$, $WZ$ or $ZZ$ boson pairs are searched for in 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted $W$ or $Z$ boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons.
Limit Plot
Limit Plot
Limit Plot
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
Transverse mass distribution for events satisfying all selection criteria in the electron channel.
Transverse mass distribution for events satisfying all selection criteria in the muon channel.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.
The distribution of $m_{lljj}$ used to discriminate the signal from background processes in the $eejj$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.
The distribution of $m_{T}^{\nu W}$ used to discriminate the signal and background processes in the $e\nu J$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The last bin includes overflow events (the underflow is not shown). The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.
Upper limits on $\sigma\times B$ as a function of $m_{e^*}$ in the $eejj$ channel. The $\pm 1(2)\sigma$ uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.
This Letter presents the observation and measurement of electroweak production of a same-sign $W$ boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of $69 \pm 7$ events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^{\mathrm {fid.}}=2.89^{+0.51}_{-0.48} \mathrm{(stat.)} ^{+0.29}_{-0.28} \mathrm{(syst.)}$ fb.
Measured fiducial cross section.
The $m_{jj}$ distribution for events meeting all selection criteria for the signal region. Signal and individual background distributions are shown as predicted after the fit. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{jj}=3.8$ TeV.
The $m_{ll}$ distribution for events meeting all selection criteria for the signal region as predicted after the fit. The fitted signal strength and nuisance parameters have been propagated, with the exception of the uncertainties due to the interference and electroweak corrections for which a flat uncertainty is assigned. The last bin includes the overflow. The highest value measured in a candidate event in data is $m_{ll}=824$ GeV.
This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the bbbb, bbWW, bb$\tau\tau$, WWWW, bb$\gamma \gamma$ and WW$\gamma\gamma$ final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio ($ \kappa_{\lambda} $) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to $ -5.0 < \kappa_{\lambda} <12.0 $ ($ -5.8 < \kappa_{\lambda} <12.0 $). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model.
Signal acceptance times efficiency as a function of κ<sub>λ</sub> for the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^{+}\tau^{-}$ and $b\bar{b}\gamma\gamma$ analyses. The $b\bar{b}b\bar{b}$ curve is the average of the 2015 and 2016 curves weighted by the integrated luminosities of the two datasets
Upper limits at 95% CL on the cross-section of the ggF non-resonant SM HH production as a function of κ<sub>λ</sub>. The observed (expected) limits are shown as solid (dashed) lines. In the $b\bar{b}\gamma\gamma$ final state, the observed and expected limits coincide. The $\pm 1 \sigma$ and $\pm 2\sigma$ bands are only shown for the combined expected limit. The theoretical prediction of the cross-section as a function of κ<sub>λ</sub> is also shown.
Upper limits at 95% CL on the cross-section of the resonant Higgs boson pair production for a spin-0 heavy scalar
A search for magnetic monopoles and high-electric-charge objects is presented using 34.4 fb$^{-1}$ of 13 TeV $pp$ collision data collected by the ATLAS detector at the LHC during 2015 and 2016. The considered signature is based upon high ionization in the transition radiation tracker of the inner detector associated with a pencil-shape energy deposit in the electromagnetic calorimeter. The data were collected by a dedicated trigger based on the tracker high-threshold hit capability. The results are interpreted in models of Drell-Yan pair production of stable particles with two spin hypotheses (0 and 1/2) and masses ranging from 200 GeV to 4000 GeV. The search improves by approximately a factor of five the constraints on the direct production of magnetic monopoles carrying one or two Dirac magnetic charges and stable objects with electric charge in the range $20\le|z|\le60$ and extends the charge range to $60<|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-0 HECO production as a function of mass for various values of electric charge in the range $20\le|z|\le100$.
Observed 95% confidence-level upper limits on the cross section for Drell-Yan spin-1/2 monopole production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
The problems of neutrino masses, matter-antimatter asymmetry, and dark matter could be successfully addressed by postulating right-handed neutrinos with Majorana masses below the electroweak scale. In this work, leptonic decays of $W$ bosons extracted from 32.9 fb$^{-1}$ to 36.1 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC are used to search for heavy neutral leptons (HNLs) that are produced through mixing with muon or electron neutrinos. The search is conducted using the ATLAS detector in both prompt and displaced leptonic decay signatures. The prompt signature requires three leptons produced at the interaction point (either $\mu\mu e$ or $e e\mu$) with a veto on same-flavour opposite-charge topologies. The displaced signature comprises a prompt muon from the $W$ boson decay and the requirement of a dilepton vertex (either $\mu\mu$ or $\mu e$) displaced in the transverse plane by 4-300 mm from the interaction point. The search sets constraints on the HNL mixing to muon and electron neutrinos for HNL masses in the range 4.5-50 GeV.
Displaced HNL event selection efficiency as a function of mean proper decay length for HNL mass 5, 7.5, 10 and 12.5 GeV.
Prompt HNL event selection efficiency as a function of mean proper decay length for HNL mass 10 GeV.
Displaced HNL search observed 95% confidence level exclusion contour in $|U_{\mu}|^2$ as a function of HNL mass (LNC case).