Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.
Measured differential four-jet cross section for R=0.4 jets, in bins of minDy_2j, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts, as well as pT1>1000 GeV. All other details are as for pT1.
We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.
Effective mass in the muon plus four jets top control region.
Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.
Normalised cross-section as a function of the N-subjettiness ratio variable tau(12) of Cambridge-Aachen jets with R=1.2.
Jets are identified and their properties studied in center-of-mass energy sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. These comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.
Multiplicity of charged particles per jet in the |rapidity| range 1.0-1.5 and transverse momentum 10-15 GeV shown separately for the two different jet radius parameter (R) values of 0.4 and 0.6.
Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading order QCD calculations corrected for non-perturbative effects, as well as to next-to-leading order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained.
Dijet Mass distribution for the |y*| range 3.5-4.0 and R=0.4.
Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Measured normalized differential cross section as a function of dijet rapidity separation 1/sigma_DY dsigma/dDeltaYjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
The jet fragmentation function and transverse profile for jets with 25 GeV < ptJet < 500 GeV and etaJet<1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb^-1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.
Charged particle ptRel distribution in the jet-Pt range 40 TO 60 GeV.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured total cross-section ratio R_{W-/Z} = sigma (W- -> e- nubar) / sigma (Z/gamma^* -> e+ e-).
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
A measurement of jet activity in the rapidity interval bounded by a dijet system is presented. Events are vetoed if a jet with transverse momentum greater than 20 GeV is found between the two boundary jets. The fraction of dijet events that survive the jet veto is presented for boundary jets that are separated by up to six units of rapidity and with mean transverse momentum 50 < pT(avg) < 500 GeV. The mean multiplicity of jets above the veto scale in the rapidity interval bounded by the dijet system is also presented as an alternative method for quantifying perturbative QCD emission. The data are compared to a next-to-leading order plus parton shower prediction from the POWHEG-BOX, an all-order resummation using the HEJ calculation and the PYTHIA, HERWIG++ and ALPGEN event generators. The measurement was performed using pp collisions at sqrt(s)=7 TeV using data recorded by the ATLAS detector in 2010.
The Gap Fraction as a function of the rapidity difference between the boundary jets for boundary jets that have a mean transverse momentum in the range [150,180] GeV . Data are shown for the dijet Forward/Backward selection with a dijet veto energy, Q0, set equal to the mean transverse momentum of the boundary jets.