The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5<pT<1 GeV and pT>1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The v_n distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range.
Comparison of MEAN(V3) and SQRT(MEAN(V3**2)), derived from the EbyE V3 distributions, with the V3(EP), for charged particles in the 0.5 < pT < 1 GeV range.
Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 0.3. This is additional data, not in the paper.
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results.
Transverse momentum distribution of the leading lepton in the validation region VR3 showing both data points with statistical errors only and the expected standard model background.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Distribution of the variable N(C=CHARGED) in the AWAY and TRANSVERSE regions for R=0.2 and jet PT in the range 19 to 24 GeV.
The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 0.75<|y|<1.5. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
The integrated and differential fiducial cross sections for the production of a W or Z boson in association with a high-energy photon are measured using pp collisions at sqrt{s} = 7 TeV. The analyses use a data sample with an integrated luminosity of 4.6 fb^{-1} collected by the ATLAS detector during the 2011 LHC data-taking period. Events are selected using leptonic decays of the W and Z bosons (W(e nu,mu nu) and Z(e+ e-, mu+ mu-, nu nubar)) with the requirement of an associated isolated photon. The data are used to test the electroweak sector of the Standard Model and search for evidence for new phenomena. The measurements are used to probe the anomalous WWgamma, ZZgamma and Zgammagamma triple-gauge-boson couplings and to search for the production of vector resonances decaying to Zgamma and Wgamma. No deviations from Standard Model predictions are observed and limits are placed on anomalous triple-gauge-boson couplings and on the production of new vector meson resonances.
95% C.L. observed and expected upper limits on fiducial cross section of spin 1 narrow resonance decays to Wgamma (l;nu;gamma) final state.
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-A.
Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at $\sqrt{s}$ = 8 TeV corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios.
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10a) for four split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to g/qq \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 400 GeV, 800 GeV and 1400 GeV are $18700\pm2800$ fb, $149\pm31$ fb and $0.71\pm0.32$ fb, respectively.
Upper limits (95% CL) from the DV+$E_T^{miss}$ channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10c) for three split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 600 GeV, 1000 GeV and 1400 GeV are $1270\pm230$ fb, $22\pm6$ fb and $0.71\pm0.32$ fb, respectively.
Upper limits (95% CL) from the DV+jets channel on the production cross-section and the corresponding event-level efficiencies (from Auxiliary Figure 10d) for three split-SUSY models as a function of the $\tilde{g}$ proper decay distance $c\tau$. The models consider gluino pair production, with $[\tilde{g}\to tt \tilde{\chi}_1^0]$ decays, $\tilde{g}$ masses in GeV as indicated and $m(\tilde{\chi}_1^0)$ = 100 GeV. For comparison, the production cross-sections for $m(\tilde{g})$ = 600 GeV, 1000 GeV and 1400 GeV are $1270\pm230$ fb, $22\pm6$ fb and $0.71\pm0.32$ fb, respectively. A dash indicates where the limit-setting procedure did not converge.
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.
Measured distribution of the jet multiplicity for SR7 selection compared to the SM expectations. The $Z\nu\nu$+jets contribution is shown as constrained by the $W\mu\nu$+jets control sample. Where appropriate, the last bin of the distribution includes overflows. The distribution of different ADD, WIMP and GMSB scenarios are included.
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.