Measurement of CP violating asymmetries in B0 decays to CP eigenstates

The BaBar collaboration Aubert, Bernard ; Boutigny, D. ; De Bonis, I. ; et al.
Phys.Rev.Lett. 86 (2001) 2515-2522, 2001.
Inspire Record 553002 DOI 10.17182/hepdata.50471

We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23 million Upsilon(4S)-->B-anti-B decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events where one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta=0.34 +/- 0.20 (stat) +/- 0.05 (syst).

1 data table

Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates. The total systematic error equals +0.50 -0.46.