Search for a W' boson decaying to a vector-like quark and a top or bottom quark in the all-jets final state at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 09 (2022) 088, 2022.
Inspire Record 2039384 DOI 10.17182/hepdata.127138

A search is presented for a heavy W' boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W' boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W' boson cross section and the final state branching fraction. A W' boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to date for this final state.

9 data tables

Reconstructed W′ boson mass distributions in the tHb signal region.

Reconstructed W′ boson mass distributions in the tZb signal region.

The W' boson 95% CL limits on the product of cross section and branching fraction. The expected and observed limits are shown for the center VLQ mass range.

More…

Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 2022 (2022) 063, 2022.
Inspire Record 2038801 DOI 10.17182/hepdata.114012

A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-­Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170\GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.599 $\pm$ 0.005 (stat) $\pm$ 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z' in the sequential standard model, a lower mass limit of 4.4 TeV is set at 95% confidence level.

5 data tables

Results for the measurement of $A_\mathrm{FB}$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as an inclusive measurement across all mass bins.

Results for the measurement of $A_0$ from the maximum likelihood fit to data in different dilepton mass bins in the different channels as well as inclusive measurement across all mass bins. To help in the interpretation of these results, we also list the average dilepton $p_{T}$ of the data events in each mass bin.

Results for the measurement of $\Delta A_\mathrm{FB}$ and $\Delta A_0$ between the muon and electron channels from the maximum likelihood fit to data in different mass bins as well as an inclusive measurement across all mass bins.

More…

Search for resonances decaying to three W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 021802, 2022.
Inspire Record 2015402 DOI 10.17182/hepdata.102646

A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} =$ 13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.

11 data tables

Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR4.

Observed upper limits at 95\% \CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses after combinign with an analysis of the all-hadronic final state.

Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.

More…

Search for charged-lepton flavor violation in top quark production and decay in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 082, 2022.
Inspire Record 2014124 DOI 10.17182/hepdata.106000

Results are presented from a search for charged-lepton flavor violating (CLFV) interactions in top quark production and decay in pp collisions at a center-of-mass energy of 13 TeV. The events are required to contain one oppositely charged electron-muon pair in the final state, along with at least one jet identified as originating from a bottom quark. The data correspond to an integrated luminosity of 138 fb$^{-1}$, collected by the CMS experiment at the LHC. This analysis includes both the production (q $\to$ e$\mu$t) and decay (t $\to$ e$\mu$q) modes of the top quark through CLFV interactions, with q referring to a u or c quark. These interactions are parametrized using an effective field theory approach. With no significant excess over the standard model expectation, the results are interpreted in terms of vector-, scalar-, and tensor-like CLFV four-fermion effective interactions. Finally, observed exclusion limits are set at 95% confidence levels on the respective branching fractions of a top quark to an e$\mu$ pair and an up (charm) quark of 0.13 $\times$ 10$^{-6}$ (1.31 $\times$ 10$^{-6}$), 0.07 $\times$ 10$^{-6}$ (0.89 $\times$ 10$^{-6}$), and 0.25 $\times$ 10$^{-6}$ (2.59 $\times$ 10$^{-6}$) for vector, scalar, and tensor CLFV interactions, respectively.

3 data tables

The expected and observed upper limits on the signal cross sections.

The expected and observed upper limits on CLFV Wilson coefficients. The Limits on the Wilson coefficients are extracted from the upper limits on the cross sections. Since the cross sections are quadratic functions of the Wilson coefficients, the limits lie on an ellipse given by the coordinate intersections.

The expected and observed upper limits on top quark CLFV branching fractions. The Limits on the top quark CLFV branching fractions are extracted from the upper limits on the Wilson coefficients.


Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 081, 2022.
Inspire Record 2011095 DOI 10.17182/hepdata.115355

A search for heavy neutral leptons (HNLs), the right-handed Dirac or Majorana neutrinos, is performed in final states with three charged leptons (electrons or muons) using proton-proton collision data collected by the CMS experiment at $\sqrt{s} =$ 13 TeV at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. The HNLs could be produced through mixing with standard model neutrinos $\nu$. For small values of the HNL mass ($\lt$ 20 GeV) and the square of the HNL-$\nu$ mixing parameter (10$^{-7}$-10$^{-2}$), the decay length of these particles can be large enough so that the secondary vertex of the HNL decay can be resolved with the CMS silicon tracker. The selected final state consists of one lepton emerging from the primary proton-proton collision vertex, and two leptons forming a displaced, secondary vertex. No significant deviations from the standard model expectations are observed, and constraints are obtained on the HNL mass and coupling strength parameters, excluding previously unexplored regions of parameter space in the mass range 1-20 GeV and squared mixing parameter values as low as 10$^{-7}$.

13 data tables

Number of predicted and observed events in the $eeX$ final states. The quoted uncertainties include statistical and systematic uncertainties.

Number of predicted and observed events in the $\mu\mu X$ final states. The quoted uncertainties include statistical and systematic uncertainties.

Number of predicted signal events in the $eeX$ final states, for several benchmark signal hypotheses for Majorana HNL. The quoted uncertainties include statistical and systematic uncertainties.

More…

Search for single production of a vector-like T quark decaying to a top quark and a Z boson in the final state with jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 093, 2022.
Inspire Record 2006491 DOI 10.17182/hepdata.100426

A search is presented for single production of a vector-like T quark with charge 2/3 $e$, in the decay channel featuring a top quark and a Z boson, with the top quark decaying hadronically and the Z boson decaying to neutrinos. The search uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded at the CERN LHC in 2016-2018. The search is sensitive to a T quark mass between 0.6 and 1.8 TeV with decay widths ranging from negligibly small up to 30% of the T quark mass. Reconstruction strategies for the top quark are based on the degree of Lorentz boosting of its final state. At 95% confidence level, the upper limit on the product of the cross section and branching fraction for a T quark of small decay width varies between 15 and 602 fb, depending on its mass. For a T quark with decay widths between 10 and 30% of its mass, this upper limit ranges between 16 and 836 fb. For most of the studied range, the results provide the best limits to date. This is the first search for single T quark production based on the full Run 2 data set of the LHC.

42 data tables

Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.

Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.

Product of efficiency and acceptance of the event selection for T signal events as a function of the particle mass $m_\mathrm{T}$ and width $\Gamma$ for the different hypotheses considered.

More…

Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012002, 2022.
Inspire Record 2000816 DOI 10.17182/hepdata.115182

A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.

38 data tables

Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2

More…

Version 3
Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 156, 2022.
Inspire Record 1994864 DOI 10.17182/hepdata.115426

The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb$^{-1}$, collected with the CMS detector at the CERN LHC, at $\sqrt{s} =$ 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.

132 data tables

The normalized distribution of the characteristic variable $R_{\text{T}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.

The normalized distribution of the characteristic variable $\Delta\phi_{\text{min}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.

The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.

More…

Search for flavor-changing neutral current interactions of the top quark and the Higgs boson decaying to a bottom quark-antiquark pair at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 169, 2022.
Inspire Record 2000853 DOI 10.17182/hepdata.110248

A search for flavor-changing neutral current interactions of the top quark (t) and the Higgs boson (H) is presented. The search is based on a data sample corresponding to an integrated luminosity of 137 fb$^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV. Events containing exactly one lepton (muon or electron) and at least three jets, among which at least two are identified as originating from the hadronization of a bottom quark, are analyzed. A set of deep neural networks is used for kinematic event reconstruction, while boosted decision trees distinguish the signal from the background events. No significant excess over the background predictions is observed, and upper limits on the signal production cross sections are extracted. These limits are interpreted in terms of top quark decay branching fractions ($\mathcal{B}$) to the Higgs boson and an up (u) or a charm quark (c). Assuming one nonvanishing extra coupling at a time, the observed (expected) upper limits at 95% confidence level are $\mathcal{B}$(t $\to$ Hu) $\lt$ 0.079 (0.11)% and $\mathcal{B}$(t $\to$ Hc) $\lt$ 0.094 (0.086)%.

17 data tables

Number of events in the combined 2017+2018 data and simulated backgrounds, shown separately for each jet category, with uncertainties obtained from the fit, assuming a nonzero Hct coupling.

The observed (expected) $95\%$ CL exclusion limits on the branching fractions $\mathcal{B}(\mathrm{t}\to\mathrm{Hu})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{Hc})$.

The observed (expected) $95\%$ CL exclusion limits on the anomalous couplings $\kappa_{\mathrm{Hut}}$ and $\kappa_{\mathrm{Hct}}$.

More…

Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 047, 2022.
Inspire Record 1986733 DOI 10.17182/hepdata.114866

A search is presented for a right-handed W boson (W$_\mathrm{R}$) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or $\mu\mu$) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of W$_\mathrm{R}$ production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses $m_\mathrm{N}$ equal to half the W$_\mathrm{R}$ mass $m_\mathrm{W_R}$ ($m_\mathrm{N}$ = 0.2 TeV), $m_\mathrm{W_R}$ is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the W$_\mathrm{R}$ mass to date.

45 data tables

The $m_{lljj}$ distribution in the resolved DY control region, electron channel.

The $m_{lljj}$ distribution in the resolved DY control region, muon channel.

The $m_{lJ}$ distribution in the boosted DY control region, electron channel.

More…