A search is presented for the pair production of new heavy resonances, each decaying into a top quark or antiquark and a gluon. The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 $\text{fb}^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in search for a signal. No significant deviations from the standard model predictions are found. Upper limits at $95\%$ confidence level are set on the product of cross section times branching fraction squared for the pair production of two excited top quarks in the $\mathrm{t}^{*} \to \mathrm{t}\mathrm{g}$ decay channel. The upper limits range from 0.12 pb to 0.8 fb for a $\text{t}^{*}$ with spin-1/2 and from 0.015 pb to 1.0 fb for a $\text{t}^{*}$ with spin-3/2. This corresponds to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t}^{*}$ particles, respectively.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.
Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.
Constraints on the Wilson coefficients (WCs) corresponding to dimension-six operators of the standard model effective field theory (SMEFT) are determined from a simultaneous fit to seven sets of CMS measurements probing Higgs boson, electroweak vector boson, top quark, and multi-jet production. The measurements of the electroweak precision observables at LEP and SLC are also included and provide complementary constraints to those from CMS. The CMS measurements, using $36$-$138\,\mathrm{fb}^{-1}$ of LHC proton-proton collision data at $\sqrt{s}=13\,\mathrm{TeV}$, are chosen to provide sensitivity to a broad set of operators, for which consistent SMEFT predictions can be derived. These are primarily measurements of differential cross sections or, in the case of Higgs boson production, simplified template cross sections, which are subsequently parametrized in the WCs. Measurements targeting $\mathrm{t\bar{t}X}$ production model the SMEFT effects directly in the reconstructed observables. Individual constraints on 64 WCs, and constraints on 42 linear combinations of WCs, are obtained. In the case of the linear combinations, the 42 parameters are varied simultaneously.
Expected and observed 95% CL limits on linear combinations of Wilson coefficients from the hybrid fit with the full set of input measurements.
Expected and observed individual 95% CL limits on Wilson coefficients from the hybrid fit with the full set of input measurements.
Rotation matrix obtained by performing the PCA on the Hessian matrix of the full set of measurements, including the t(t)X analysis.
A search for Kaluza-Klein (KK) gluon resonances, $\mathrm{g_{KK}}$, decaying in cascade into two $\mathrm{W}$ bosons and a gluon via a scalar radion $\mathrm{R}$, $\mathrm{g_{KK} \rightarrow gR \rightarrow gWW}$, is presented. The final state with three large-radius jets, two of which contain the products of hadronically decaying $\mathrm{W}$ bosons is considered. The search is performed with $\sqrt{s}=13~\mathrm{TeV}$ proton-proton collision data collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of $138~\mathrm{fb}^{-1}$. Both the $\mathrm{g_{KK}}$ and the $\mathrm{R}$ resonances are reconstructed. The ratio of their masses is used for event categorization, and the trijet mass distribution is used to extract a potential signal. Upper limits are set on the product of the $\mathrm{g_{KK}}$ production cross section and branching fraction to $\mathrm{gWW}$. Additionally, lower limits are set on the two resonance masses for an extended warped extra-dimensional model in which the quantum chromodynamics sector propagates into the extended bulk. This search is the first of its kind.
Figure 3 (upper left): The $m^∗_{jjj}$ postfit spectra in the SR1a. The lower panel shows the pull distribution.
Figure 3 (upper right): The $m^∗_{jjj}$ postfit spectra in the SR2a. The lower panel shows the pull distribution.
Figure 3 (middle left): The $m^∗_{jjj}$ postfit spectra in the SR3a. The lower panel shows the pull distribution.
Searches are performed for resonances decaying to two jets, with at least one jet originating from a b quark, in proton-proton collisions at $\sqrt{s}=13$ TeV. The dataset corresponds to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS detector at the LHC. Jets are identified as containing energetic b hadrons using a deep neural network b tagger. The invariant mass spectrum of b-tagged dijets is well described by a smooth parameterization and no evidence for the production of new particles is observed. Cross-section upper limits are set on resonances decaying into b quarks. These limits exclude at $95\%$ confidence level models of Z' bosons with a mass less than 2.4 TeV, and an excited b quark with mass less than 4.0 TeV.
Signal shapes of b* from the process bg$\rightarrow$b∗$\rightarrow$bg. Shown are the wide jets used to reconstruct the dijet mass spectra.
The acceptance times efficiency of the event selection for a Z'$\rightarrow$bb resonance as a function of the resonance mass.
The differential cross sections as a function of the dijet mass for the double b tagging category during 2016.
A search for single production of a vector-like T quark with charge $2/3\,e$, in the decay channel with a top quark and a neutral scalar boson $\phi$ is presented. The $\phi$ boson can be a standard model Higgs boson or a new particle beyond the standard model. The top quark is identified in its leptonic decay, and the neutral boson decays into a bottom quark-antiquark pair. Final states with boosted topologies are considered and machine learning techniques are exploited for optimal classification. The analysis uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$, corresponding to an integrated luminosity of $138~\mathrm{fb}^{-1}$ recorded at the CERN LHC in 2016$-$2018. Limits at $95\%$ confidence levels are set on the product of the cross section and branching fraction for a T quark of small decay width. They are in the range between 15 and $0.15~\mathrm{fb}$, depending on T quark and $\phi$ boson masses. In the case of the decay channel with a top quark and a standard model Higgs boson, for most of the studied range the analysis provides limits which are better or comparable with previous searches performed in CMS.
Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopT, XbbL) validation region for the muon channel. The distribution is shown before the final fit for signal extraction.
Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopT, XbbL) validation region for the electron channel. The distribution is shown before the final fit for signal extraction.
Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopL, XbbL) validation region for the muon channel. The distribution is shown before the final fit for signal extraction.