Date

Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements

The CMS collaboration
CMS-PAS-SMP-24-003, 2024.
Inspire Record 2835035 DOI 10.17182/hepdata.157866

Constraints on the Wilson coefficients (WCs) corresponding to dimension-six operators of the standard model effective field theory (SMEFT) are determined from a simultaneous fit to seven sets of CMS measurements probing Higgs boson, electroweak vector boson, top quark, and multi-jet production. The measurements of the electroweak precision observables at LEP and SLC are also included and provide complementary constraints to those from CMS. The CMS measurements, using $36$-$138\,\mathrm{fb}^{-1}$ of LHC proton-proton collision data at $\sqrt{s}=13\,\mathrm{TeV}$, are chosen to provide sensitivity to a broad set of operators, for which consistent SMEFT predictions can be derived. These are primarily measurements of differential cross sections or, in the case of Higgs boson production, simplified template cross sections, which are subsequently parametrized in the WCs. Measurements targeting $\mathrm{t\bar{t}X}$ production model the SMEFT effects directly in the reconstructed observables. Individual constraints on 64 WCs, and constraints on 42 linear combinations of WCs, are obtained. In the case of the linear combinations, the 42 parameters are varied simultaneously.

24 data tables

Expected and observed 95% CL limits on linear combinations of Wilson coefficients from the hybrid fit with the full set of input measurements.

Expected and observed individual 95% CL limits on Wilson coefficients from the hybrid fit with the full set of input measurements.

Rotation matrix obtained by performing the PCA on the Hessian matrix of the full set of measurements, including the t(t)X analysis.

More…

Search for heavy resonances decaying to b quarks in proton-proton collisions at sqrt s=13 TeV

The CMS collaboration
CMS-PAS-EXO-20-008, 2021.
Inspire Record 1920627 DOI 10.17182/hepdata.127768

Searches are performed for resonances decaying to two jets, with at least one jet originating from a b quark, in proton-proton collisions at $\sqrt{s}=13$ TeV. The dataset corresponds to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS detector at the LHC. Jets are identified as containing energetic b hadrons using a deep neural network b tagger. The invariant mass spectrum of b-tagged dijets is well described by a smooth parameterization and no evidence for the production of new particles is observed. Cross-section upper limits are set on resonances decaying into b quarks. These limits exclude at $95\%$ confidence level models of Z' bosons with a mass less than 2.4 TeV, and an excited b quark with mass less than 4.0 TeV.

19 data tables

Signal shapes of b* from the process bg$\rightarrow$b∗$\rightarrow$bg. Shown are the wide jets used to reconstruct the dijet mass spectra.

The acceptance times efficiency of the event selection for a Z'$\rightarrow$bb resonance as a function of the resonance mass.

The differential cross sections as a function of the dijet mass for the double b tagging category during 2016.

More…

Search for single production of a vector-like T quark decaying to a top quark and a neutral scalar boson in lepton+jets final states at sqrt(s) = 13 TeV

The CMS collaboration
CMS-PAS-B2G-23-009, 2025.
Inspire Record 2922273 DOI 10.17182/hepdata.158362

A search for single production of a vector-like T quark with charge $2/3\,e$, in the decay channel with a top quark and a neutral scalar boson $\phi$ is presented. The $\phi$ boson can be a standard model Higgs boson or a new particle beyond the standard model. The top quark is identified in its leptonic decay, and the neutral boson decays into a bottom quark-antiquark pair. Final states with boosted topologies are considered and machine learning techniques are exploited for optimal classification. The analysis uses data collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of $13~\mathrm{TeV}$, corresponding to an integrated luminosity of $138~\mathrm{fb}^{-1}$ recorded at the CERN LHC in 2016$-$2018. Limits at $95\%$ confidence levels are set on the product of the cross section and branching fraction for a T quark of small decay width. They are in the range between 15 and $0.15~\mathrm{fb}$, depending on T quark and $\phi$ boson masses. In the case of the decay channel with a top quark and a standard model Higgs boson, for most of the studied range the analysis provides limits which are better or comparable with previous searches performed in CMS.

19 data tables

Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopT, XbbL) validation region for the muon channel. The distribution is shown before the final fit for signal extraction.

Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopT, XbbL) validation region for the electron channel. The distribution is shown before the final fit for signal extraction.

Distribution of the mass of the AK8 jet selected as the $\phi$ boson candidate for data and simulated background events in the (TopL, XbbL) validation region for the muon channel. The distribution is shown before the final fit for signal extraction.

More…