Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 152302, 2004.
Inspire Record 642225 DOI 10.17182/hepdata.140436

Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $<k_{\rm T}>$ from 0.25 to 1.2 GeV/c and for all measured centralities. However, using recently developed partial Coulomb correction methods, we find that $R_{\rm out}/R_{\rm side}$ is 0.8-1.1 for the measured $<k_{\rm T}>$ range, and approximately constant at unity with the number of participants.

1 data table match query

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.


Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

1 data table match query

Away-side $I_{AA}$ for the entire away-side $|\Delta \phi - \pi| < \pi /2$ selection vs. $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta. A point-to-point uncorrelated 6% normalization uncertainty (mainly due to efficiency corrections) applies to all measurements.


Flow measurements via two-particle azimuthal correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 212301, 2002.
Inspire Record 585347 DOI 10.17182/hepdata.141931

Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.

1 data table match query

$v_2$ vs Fixed $p_T$ for several centrality selections. [F] and [A] follow the notation Fig. 2. Systematic errors are estimated to be $\sim 5$%.


Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 80 (2009) 024909, 2009.
Inspire Record 819672 DOI 10.17182/hepdata.143606

We present inclusive charged hadron elliptic flow v_2 measured over the pseudorapidity range |\eta| < 0.35 in Au+Au collisions at sqrt(s_NN) = 200 GeV. Results for v_2 are presented over a broad range of transverse momentum (p_T = 0.2-8.0 GeV/c) and centrality (0-60%). In order to study non-flow effects that are not correlated with the reaction plane, as well as the fluctuations of v_2, we compare two different analysis methods: (1) event plane method from two independent sub-detectors at forward (|\eta| = 3.1-3.9) and beam (|\eta| > 6.5) pseudorapidities and (2) two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p_T and in centrality 0-40%. There is at most 20% difference of the v_2 between the two event plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event plane measurements are discussed.

1 data table match query

Comparison of the $v_2${BBC} and $v_2${ZDC-SMD} obtained from the S-N and ZDC-BBC-CNT subevents as a function of pT in the 20–60% centrality range.


Absence of suppression in particle production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072303, 2003.
Inspire Record 621391 DOI 10.17182/hepdata.143668

Transverse momentum spectra of charged hadrons with p_T < 8 GeV/c and neutral pions with p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_NN) = 200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt(s_NN) scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.

1 data table match query

Nuclear modification factor $R_{dA}$ for ($h^+$+$h^-$)/2 in minimum bias $d$+$Au$.


Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

2 data tables match query

$v_2$ vs. $p_T$ for $\pi$/$K$/$p$ emitted from Au+Au at 62.4 and 200 GeV and Cu+Cu at 62.4 and 200 GeV for centralities given.

$v_2$ vs. $p_T$ and $v_2$/($\epsilon * N^{1/3}_{part} * n_q$) vs. ${KE}_T$/$n_q$ for $\pi$/$K$/$p$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV. The values of $v_2$ and $p_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 14, and the values of $v_2$, $n_q$, and $KE_T$ in Au+Au at 200 GeV, in Au+Au at 62.4 GeV, and in Cu+Cu at 200 GeV are the same for as figure 18.


Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{NN}}=200$ GeV Au$+$Au collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064911, 2018.
Inspire Record 1624209 DOI 10.17182/hepdata.144180

We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter $\lambda$, the L\'evy index of stability $\alpha$ and the L\'evy length scale parameter $R$ as a function of average transverse mass of the pair $m_T$. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The $\lambda(m_T)$ measurements indicate a decrease of the strength of the correlations at low $m_T$. The L\'evy length scale parameter $R(m_T)$ decreases with increasing $m_T$, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability $\alpha$ are found to be significantly lower than the Gaussian case of $\alpha=2$, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.

1 data table match query

Example fits of Bose-Einstein correlation functions of (a) $\pi^{-}\pi^{-}$ pair with $m_{T}$ between 0.331 and 0.349 GeV/$c^2$ and of (b) $\pi^{+}\pi^{+}$ pair with $m_T$ between 0.655 and 0.675 GeV/$c^2$, as a function $Q$ ≡ |$q_{LCMS}$|, defined in Eq. (26). Both fits show the measured correlation function and the complete fit function (described in VI A), while a Bose-Einstein fit function $C^{(0)}_{2} (Q)$ is also shown, with the Coulomb-corrected data, i.e. the raw data multiplied by $C^{(0)}_{2} (Q)/C_{2}(Q)$. In this analysis we measured 62 such correlation functions (for ++ and -- pairs, in 31 $m_T$ bins), and fitted all of them with the method described in VIA. The first visible point on both panels corresponds to $Q$ values below the accessible range (based on an evaluation of the two-track cuts), these were not taken into account in the fitting.


Jet structure from dihadron correlations in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 73 (2006) 054903, 2006.
Inspire Record 694429 DOI 10.17182/hepdata.151167

Dihadron correlations at high transverse momentum in d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). From these correlations we extract several structural characteristics of jets; the root-mean-squared (RMS) transverse momentum of fragmenting hadrons with respect to the jet sqrt(<j_T^2>), the mean sine-squared angle between the scattered partons <sin^2(phi_jj)>, and the number of particles produced within the dijet that are associated with a high-p_T particle (dN/dx_E distributions). We observe that the fragmentation characteristics of jets in d+Au collisions are very similar to those in p+p collisions and that there is also little dependence on the centrality of the d+Au collision. This is consistent with the nuclear medium having little influence on the fragmentation process. Furthermore, there is no statistically significant increase in the value of <sin^2(phi_jj)> from p+p to d+Au collisions. This constrains the amount of multiple scattering that partons undergo in the cold nuclear medium before and after a hard-collision.

1 data table match query

Near- and far-side widths and conditional yields as a function of $N_{coll}$ for charged hadron triggers (2.5−4 GeV/$c$) and associated charged hadrons (1–2.5 GeV/$c$) from $d$+Au collisions.


Saturation of azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 62-GeV - 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 232302, 2005.
Inspire Record 664944 DOI 10.17182/hepdata.141741

New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.

1 data table match query

Differential anisotropy as a function of centrality for $\sqrt{s_{NN}}$ = 62.4 GeV/$c$


Kaon interferometric probes of space-time evolution in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 103 (2009) 142301, 2009.
Inspire Record 816475 DOI 10.17182/hepdata.141728

Bose-Einstein correlations of charged kaons are measured for Au+Au collisions at sqrt(s_NN) = 200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function if N_part^1/3 with zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r >~ 10 fm, although the bulk emission at lower radius is well-described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.

3 data tables match query

Measured $C_2$($q_{inv}$) and restored $C_2$($q_{inv}$) from imaged $S(r)$, compared with angle-averaged Gaussian $C_2$($q_{inv}$) for charged kaon pairs measured for 0.3 < $k_T$ < 0.9 GeV/$c$ at 0-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Measured $C_2$($q_{inv}$) and restored $C_2$($q_{inv}$) from imaged $S(r)$, compared with angle-averaged Gaussian $C_2$($q_{inv}$) for charged kaon pairs measured for 0.3 < $k_T$ < 0.9 GeV/$c$ at 0-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Measured $C_2$($q_{inv}$) and restored $C_2$($q_{inv}$) from imaged $S(r)$, compared with angle-averaged Gaussian $C_2$($q_{inv}$) for charged kaon pairs measured for 0.3 < $k_T$ < 0.9 GeV/$c$ at 0-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.