Most atomic nuclei exhibit ellipsoidal shapes characterized by quadrupole deformation $β_2$ and triaxiality $γ$, and sometimes even a pear-like octupole deformation $β_3$. The STAR experiment introduced a new "imaging-by-smashing" technique [arXiv:2401.06625, arXiv:2501.16071] to image the nuclear global shape by colliding nuclei at ultra-relativistic speeds and analyzing outgoing debris. Features of nuclear shape manifest in collective observables like anisotropic flow $v_n$ and radial flow via mean transverse momentum $[p_{\mathrm{T}}]$. We present new measurements of the variances of $v_n$ ($n=2$, 3, and 4) and $[p_{\mathrm{T}}]$, and the covariance of $v_n^2$ with $[p_{\mathrm{T}}]$, in collisions of highly deformed $^{238}$U and nearly spherical $^{197}$Au. Ratios of these observables between the two systems effectively suppress common final-state effects, isolating the strong impact of uranium's deformation. By comparing results with state-of-the-art hydrodynamic model calculations, we extract $β_{2\mathrm{U}}$ and $γ_{\mathrm{U}}$ values consistent with those deduced from low-energy nuclear structure measurements. Measurements of $v_3$ and its correlation with $[p_{\mathrm{T}}]$ also provide the first experimental suggestion of a possible octupole deformation for $^{238}$U. These findings provide significant support for using high-energy collisions to explore nuclear shapes on femtosecond timescales, with implications for both nuclear structure and quark-gluon plasma studies.
Data from Figure 2, panel a, $p(N_{ch}^{rec})$
Data from Figure 2, panel b, $p(N_{ch}^{rec})$
Data from Figure 3, panel a, Au+Au
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Data from Figure 2, panel a, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel a, U+U, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel b, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c