Date

Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2

The A1 collaboration Weis, M. ; Bartsch, P. ; Baumann, D. ; et al.
Eur.Phys.J.A 38 (2008) 27-33, 2008.
Inspire Record 751930 DOI 10.17182/hepdata.51606

The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L, \sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of \theta=90^\circ. By an additional out-of-plane measurement with polarized electrons \sigma_{LT'} was determined. This showed for the first time the cusp effect above the \pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.

1 data table match query

Beam helicity asymmetry.


Recoil properties of deep spallation and fragmentation products in the interaction of tantalum with 3.65-A-Gev C-12 ions and protons

Kozma, P. ;
Phys.Scripta 43 (1991) 133-136, 1991.
Inspire Record 299297 DOI 10.17182/hepdata.39412

Thick-target recoil properties of deep spallation and fragmentation products of the interaction of tantalum with 3.65 AGeV 12C-ions and 3.65 GeV protons have been studied. The kinematic parameters such as mean product kinetic energies and velocities of the remnant have been deduced from the data by means of the two-step vector velocity model of high-energy reactions. The results have also been used to test the applicability of the factorization hypothesis to the kinematic properties.

2 data tables match query

ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.

ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.