Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 234, 2023.
Inspire Record 2653332 DOI 10.17182/hepdata.140956

A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV were analysed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 441 candidate signal events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150-1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04-0.09 TeV$^{-1}$ at 95%confidence level.

9 data tables

Signal selection efficiency as a function of ALP mass $m_{\textrm{X}}$ for the exclusive (EL), single-dissociative (SD), and double-dissociative (DD) processes. The ratio of the number of selected events to the number of generated MC events is given (black points) and is parameterised by an analytic function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.

The diphoton mass distribution of the mixed-data sample (black points).

The $(\xi_{\gamma\gamma}^{+},\xi_{\gamma\gamma}^{-})$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma}$ in [150,1600] GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward-proton matching is possible, $[0.035-\xi_{\textrm{th}}, 0.08+\xi_{\textrm{th}} ]$, for events that pass the matching requirement to the A or C side as indicated. No event passed the matching requirement for both the A-side and C-side.

More…

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$

The CMS collaboration
CMS-PAS-EXO-20-004, 2021.
Inspire Record 1869138 DOI 10.17182/hepdata.106059

A search is presented for new particles produced in proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$ at the LHC, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of $101~\mathrm{fb}^{-1}$, collected in 2017$-$2018 with the CMS detector. Separate categories are defined for events with narrow jets from initial-state radiation and with large-radius jets consistent with a hadronic decay of a W or a Z boson. Novel machine learning techniques are used to identify hadronic W and Z boson decays. The analysis is combined with an earlier search based on a data sample corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation, as determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on gravitons in models with large extra dimensions. Several of the new limits are the most restrictive to date.

55 data tables

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

Differential signal yields for various signal hypotheses.

More…