Showing 10 of 18 results
Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as $R$-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of 18.4 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 8 TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on $R$-hadrons and chargino production are set. Gluino $R$-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95$\%$ confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.
Ratio of the reconstructed mass, computed as the most probable value of a fit to a Landau distribution convolved with a Gaussian, to the generated mass, as a function of the generated mass for stable gluino R-hadrons, along with the half-width at half maximum of the reconstructed mass distribution normalised to the generated mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable R-hadron mass.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Efficiency for the calorimetric MET>80 GeV trigger as a function of the stable chargino mass.
Total selection efficiency as a function of the stable R-hadron mass.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass = m(gluino) - 100 GeV with a lifetime of 10 ns.
Total selection efficiency as a function of the metastable R-hadron mass. The R-hadron decays to g/qq plus neutralino of mass 100 GeV with a lifetime of 1 ns.
Total selection efficiency as a function of the stable chargino mass.
Ionisation distribution of all the CR2 tracks, and those not matched to a reconstructed muon. The two distributions are normalised to their total number of entries.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for one example of chargino signal, for searches for stable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data, for searches for stable particles. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of gluino R-hadron signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for an example of chargino signal, for searches for metastable particles. The signal distributions are stacked on the expected background, and a narrower binning is used for them to allow the signal shape to be seen more clearly. The number of signal events is that expected according to the theoretical cross sections.
Distribution of the mass of selected candidates, derived from the specific ionisation loss, for background and data. The expected background is shown with its total uncertainty (sum in quadrature of statistical, normalisation and systematic errors).
Theoretical values for the cross section of gluino pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into g/qq plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau =10 ns, decaying into tt plus a heavy neutralino of mass(gluino) - 100 GeV.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a light neutralino of mass 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for gluino R-hadrons decaying into tt plus a heavy neutralino of mass = m(gluino) - 100 GeV, with respect to the nominal theoretical cross section plus its uncertainty.
Theoretical values for the production cross section of charginos or chargino/neutralino pairs, with their uncertainty.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion, in the background-only case, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =1.0 ns, decaying into neutralino + pion.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, plus 1 experimental sigma.
The expected excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section, minus 1 experimental sigma.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section.
The observed excluded range of lifetimes as a function of chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section minus its uncertainty.
The observed excluded range of lifetimes as a function of gluino mass for chargino mass for charginos decaying into neutralino plus pion, with respect to the nominal theoretical cross section plus its uncertainty.
dEdx ionization for data, 1 TeV gluino R-hadrons stable and decaying in 100 GeV neutralinos with a 10 ns lifetime and for charginos of 350 GeV. Tracks that fulfil all the requirements up to including the High-m_T (see Tab.1 in the paper) are considered at this stage and normalised to an integrated luminosity of 18.4 fb^-1.
Expected upper limits on the production cross section as a function of mass for stable gluino R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable gluino R-hadrons.
Theoretical values for the cross section of squark pairs production with their uncertainty.
Expected upper limits on the production cross section as a function of mass for stable sbottom R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable sbottom $R$-hadrons. Cross section IN PB.
Expected upper limits on the production cross section as a function of mass for stop R-hadrons, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stop R-hadrons.
Expected upper limits on the production cross section as a function of mass for stable charginos, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for stable charginos.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to g/qq plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a light neutralino of mass 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable gluino R-hadrons, with lifetime tau=1.0 ns, decaying to tt plus a heavy neutralino of mass = m(gluino) - 100 GeV.
Expected upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
Observed 95 PCT upper limits on the production cross section as a function of mass for metastable charginos, with lifetime tau =15 ns, decaying to neutralino and pion, in case of background only, with its 1 sigma band.
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider (LHC) are reported. The search is based on proton-proton collision data at a centre-of-mass energy $\sqrt{s} = 8$ TeV collected in 2012, corresponding to an integrated luminosity of 20 fb$^{-1}$. No significant excess above the Standard Model expectation is observed. Limits are set on the parameters of a minimal universal extra dimensions model, excluding a compactification radius of $1/R_c=950$ GeV for a cut-off scale times radius ($\Lambda R_c$) of approximately 30, as well as on sparticle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}/m_{eff}$ distribution in soft single-lepton 3-jet inclusive signal region. The last bin includes the overflow.
Observed and expected $E_T^{miss}$ distribution in soft dimuon signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution in hard single-lepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $m_{eff}^{incl}$ distribution for hard single-lepton 5-jet signal region. The last bin includes the overflow.
Observed and expected $E_{T}^{miss}$ distribution for hard single-lepton 6-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard same-flavour dilepton 3-jet signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton low-multiplicity signal region. The last bin includes the overflow.
Observed and expected $M_{R}'$ distribution for hard opposite-flavour dilepton 3-jet opposite-flavour signal region. The last bin includes the overflow.
Observed 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Expected 95% exclusion contour for the mSUGRA/CMSSM model with $\tan\beta=30$, $A_{0}=-2m_{0}$ and $\mu > 0$.
Observed 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Expected 95% exclusion contour for the bRPV MSUGRA/CMSSM model.
Observed 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Expected 95% exclusion contour for the natural gauge mediation with a stau NLSP model (nGM).
Observed 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Expected 95% exclusion contour for the non-universal higgs masses with gaugino mediation model (NUHMG).
Observed 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Expected 95% exclusion contour for the minimal UED model from the combination of the hard dilepton and soft dilepton analyses.
Observed 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the hard dilepton analysis.
Observed 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Expected 95% exclusion contour for the minimal UED model from the soft dilepton analysis.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production, where the top squark is assumed to decay exclusively via $\tilde{t} \rightarrow c \tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Expected 95% exclusion contour for the simplified model with gluino-mediated top squark production where the gluinos are assumed to decay exclusively through a virtual top squark, $\tilde{g} \rightarrow tt+\tilde{\chi}^{0}_{1}$.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the hard single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Expected 95% exclusion contour for the the first- and second-generation squark simplified model from the soft single-lepton analysis for the case in which the chargino mass is fixed at x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) = 1/2.
Observed 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the hard single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the gluino simplified model from the soft single-lepton analysis for the case in which x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the combination of soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected 95% exclusion contour for the first- and second-generation squark simplified model from the soft single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the combination of the hard dilepton and hard single-lepton analyses.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard single-lepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Expected 95% exclusion contour for the two-step first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Expected 95% exclusion contour for the two-step gluino simplified model without sleptons from the hard single-lepton analysis.
Number of generated events in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Production cross-section in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Number of generated events in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV. squark decaying to quark neutralino1 with varying x.
Production cross-section in the the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Number of generated evens in the minimal UED model.
Production cross-section in the minimal UED model in pb.
Number of generated events in the two-step first- and second-generation squark simplified model with sleptons.
Production cross-section in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for soft single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for the soft single-lepton 3-jet inclusive signal region in the gluino simplified model for the case in x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Expected CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed CLs from the combination of the soft single-lepton and hard single-lepton analyses in the gluino simplified model for the case in which the chargino mass is varied and the LSP mass is set at 60 GeV. The chargino mass is parameterised using x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)).
Acceptance for soft dimuon signal region in the minimal UED model (mUED).
Efficiency for soft dimuon signal region in minimal UED model (mUED).
Acceptance for hard dilepton 3-jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3jet opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton 3-jet same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity opposite-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Acceptance for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Efficiency for hard dilepton low-multiplicity same-flavour signal region in the two-step first- and second-generation squark simplified model with sleptons.
Best expected signal region in the minimal UED model (mUED).
Expected CLs from hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Observed CLs from the hard dilepton analysis in the two-step first- and second-generation squark simplified model with sleptons.
Expected CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Observed CLs from the combination of the soft dimuon and hard dilepton analyses in the minimal UED model (mUED).
Acceptance for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 3-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 5-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Efficiency for hard single-lepton 6-jet signal region in the gluino simplified model for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Acceptance for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 3-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 5-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Acceptance for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Efficiency for hard single-lepton 6-jet signal region in the first- and second-generation squark simplified model for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the gluino simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which the chargino mass is fixed at x = (m(gluino)-m(chargino))/(m(gluino)-m(LSP)) = 1/2.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model from the combination of the soft single-lepton and hard single-lepton analyses for the case in which x = (m(squark)-m(chargino))/(m(squark)-m(LSP)) is varied and the LSP mass is set at 60 GeV.
Observed 95% upper limit on the visible cross-section in the first- and second-generation squark simplified model with sleptons from the hard dilepton analysis.
Observed 95% upper limit on the visible cross-section in the minimal UED model (mUED) from the combination of the soft dimuon and hard dilepton analyses.
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Observed 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the pMSSM grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the pMSSM grid.
+1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
-1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the 2Step grid.
Observed 95% CL limit for the 2Step grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the 2Step grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the 2Step grid.
+1 sigma excursion of the expected 95% CL limit for the 2Step grid.
-1 sigma excursion of the expected 95% CL limit for the 2Step grid.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Degree of multijet closure for signal and vaidation regions with at no b-jet requirement. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 1 b-jet. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 2 b-jets. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Summary of all 15 signal regions (post-fit).
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the 2Step grid.
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the pMSSM grid.
95% CLs observed upper limit on model cross-section for 2-step signal points for the best-expected signal region.
Performance of the 8j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in $\sqrt{s}=$ 13 TeV proton--proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb$^{-1}$ of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background and signal effective mass distributions for SR2jl. For signal, a squark direct decay model with $m(\tilde q)=800$ GeV and $m(\tilde\chi^0_1)=400$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jm. For signal, a gluino direct decay model with $m(\tilde g)=750$ GeV and $m(\tilde\chi^0_1)=660$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jt. For signal, a squark direct decay model with $m(\tilde q)=1200$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR4jt. For signal, a gluino direct decay model with $m(\tilde g)=1400$ GeV and $m(\tilde\chi^0_1)=0$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jm. For signal, a gluino one-step decay model with $m(\tilde g)=1265$ GeV, $m(\tilde\chi^\pm_1)=945$ GeV and $m(\tilde\chi^0_1)=625$ GeV is shown.
Observed and expected background and signal effective mass distributions for SR6jt. For signal, a gluino one-step decay model with $m(\tilde g)=1385$ GeV, $m(\tilde\chi^\pm_1)=705$ GeV and $m(\tilde\chi^0_1)=25$ GeV is shown.
Expected limit at 95% CL for squark direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for squark direct decay model grid.
Observed limits at 95% CL for squark direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for squark direct decay model grid.
Expected limit at 95% CL for gluino direct decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino direct decay model grid.
Observed limits at 95% CL for gluino direct decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino direct decay model grid.
Expected limit at 95% CL for gluino one-step decay model grid.
Expected limits at 95% CL +1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Expected limits at 95% CL -1 sigma excursion due to experimental and background-only theoretical uncertainties for gluino one-step decay model grid.
Observed limits at 95% CL for gluino one-step decay model grid.
Observed limits at 95% CL +1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed limits at 95% CL -1 sigma excursion due to the signal cross-section uncertainty for gluino one-step decay model grid.
Observed and expected background effective mass distributions in control region CRgamma for SR2jl.
Observed and expected background effective mass distributions in validation region VRZ for SR2jl.
Observed and expected background effective mass distributions in control region CRW for SR2jl.
Observed and expected background effective mass distributions in control region CRT for SR2jl.
Observed and expected background effective mass distributions in control region CRgamma for SR2jm.
Observed and expected background effective mass distributions in validation region VRZ for SR2jm.
Observed and expected background effective mass distributions in control region CRW for SR2jm.
Observed and expected background effective mass distributions in control region CRT for SR2jm.
Observed and expected background effective mass distributions in control region CRgamma for SR2jt.
Observed and expected background effective mass distributions in validation region VRZ for SR2jt.
Observed and expected background effective mass distributions in control region CRW for SR2jt.
Observed and expected background effective mass distributions in control region CRT for SR2jt.
Observed and expected background effective mass distributions in control region CRgamma for SR4jt.
Observed and expected background effective mass distributions in validation region VRZ for SR4jt.
Observed and expected background effective mass distributions in control region CRW for SR4jt.
Observed and expected background effective mass distributions in control region CRT for SR4jt.
Observed and expected background effective mass distributions in control region CRgamma for SR5j.
Observed and expected background effective mass distributions in validation region VRZ for SR5j.
Observed and expected background effective mass distributions in control region CRW for SR5j.
Observed and expected background effective mass distributions in control region CRT for SR5j.
Observed and expected background effective mass distributions in control region CRgamma for SR6jm.
Observed and expected background effective mass distributions in validation region VRZ for SR6jm.
Observed and expected background effective mass distributions in control region CRW for SR6jm.
Observed and expected background effective mass distributions in control region CRT for SR6jm.
Observed and expected background effective mass distributions in control region CRgamma for SR6jt.
Observed and expected background effective mass distributions in validation region VRZ for SR6jt.
Observed and expected background effective mass distributions in control region CRW for SR6jt.
Observed and expected background effective mass distributions in control region CRT for SR6jt.
Observed and expected event yields in VRZ as a function of signal region.
Observed and expected event yields in VRW as a function of signal region.
Observed and expected event yields in VRWv as a function of signal region.
Observed and expected event yields in VRT as a function of signal region.
Observed and expected event yields in VRTv as a function of signal region.
Observed and expected event yields in VRQa as a function of signal region.
Observed and expected event yields in VRQb as a function of signal region.
Signal acceptance for SR2jl in squark direct decay model grid.
Signal acceptance times efficiency for SR2jl in squark direct decay model grid.
Signal acceptance for SR2jm in squark direct decay model grid.
Signal acceptance times efficiency for SR2jm in squark direct decay model grid.
Signal acceptance for SR2jt in squark direct decay model grid.
Signal acceptance times efficiency for SR2jt in squark direct decay model grid.
Signal acceptance for SR4jt in squark direct decay model grid.
Signal acceptance times efficiency for SR4jt in squark direct decay model grid.
Signal acceptance for SR5j in squark direct decay model grid.
Signal acceptance times efficiency for SR5j in squark direct decay model grid.
Signal acceptance for SR6jm in squark direct decay model grid.
Signal acceptance times efficiency for SR6jm in squark direct decay model grid.
Signal acceptance for SR6jt in squark direct decay model grid.
Signal acceptance times efficiency for SR6jt in squark direct decay model grid.
Signal acceptance for SR2jl in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jl in gluino direct decay model grid.
Signal acceptance for SR2jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jm in gluino direct decay model grid.
Signal acceptance for SR2jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR2jt in gluino direct decay model grid.
Signal acceptance for SR4jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR4jt in gluino direct decay model grid.
Signal acceptance for SR5j in gluino direct decay model grid.
Signal acceptance times efficiency for SR5j in gluino direct decay model grid.
Signal acceptance for SR6jm in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jm in gluino direct decay model grid.
Signal acceptance for SR6jt in gluino direct decay model grid.
Signal acceptance times efficiency for SR6jt in gluino direct decay model grid.
Signal acceptance for SR2jl in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jl in gluino one-step decay model grid.
Signal acceptance for SR2jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jm in gluino one-step decay model grid.
Signal acceptance for SR2j5 in gluino one-step decay model grid.
Signal acceptance times efficiency for SR2jt in gluino one-step decay model grid.
Signal acceptance for SR4jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR4jt in gluino one-step decay model grid.
Signal acceptance for SR5j in gluino one-step decay model grid.
Signal acceptance times efficiency for SR5j in gluino one-step decay model grid.
Signal acceptance for SR6jm in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jm in gluino one-step decay model grid.
Signal acceptance for SR6jt in gluino one-step decay model grid.
Signal acceptance times efficiency for SR6jt in gluino one-step decay model grid.
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.
Etmiss distribution for SRA1 and SRA2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRA3 and SRA4 after all selection requirements except those on Etmiss.
Etmiss distribution for SRB after all selection requirements except those on Etmiss.
Etmiss distribution for SRC1 after all selection requirements except those on Etmiss.
Etmiss distribution for SRC2 after all selection requirements except those on Etmiss.
Etmiss distribution for SRC3 after all selection requirements except those on Etmiss.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=100%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=100%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Observed exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Expected exclusion limit at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Nominal observed excluded cross sections at 95% CL in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario, once corrected by the recorded luminosity and the efficiency times acceptance of the model itself.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=75%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=50%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=25%.
Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where BR(stop --> top+neutralino)=0%.
Signal acceptance for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to top+neutralino. The acceptance is defined in Appendix A of arXiv:1403.4853.
Signal efficiency for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to top+neutralino.
Signal acceptance for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to b+chargino. The acceptance is defined in Appendix A of arXiv:1403.4853.
Signal efficiency for the different signal regions (SR) in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario with both stops decaying to b+chargino.
Number of generated Monte Carlo events in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino.
Number of generated Monte Carlo events in the ( M(STOP), M(NEUTRALINO) ) mass plane in the stop pair production scenario where both stops decay to b+chargino.
Stop signal production cross sections in the ( M(STOP), M(NEUTRALINO) ) mass plane.
Total experimental systematic uncertainty in percent on the signal yield for SRA1 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA2 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA3 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRA4 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRB in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC1 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC2 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Total experimental systematic uncertainty in percent on the signal yield for SRC3 in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario where both stops decay to top+neutralino. The uncertainty does not include Monte Carlo statistical uncertainties, nor theoretical uncertainties on the signal cross section.
Observed and expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario. The value for the best expected signal region combination is shown.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Pre-fit $m_{eff}$ distribution in the TR6J control region. Uncertainties include statistical and systematic uncertainties (added in quadrature). The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Pre-fit $m_{eff}$ distribution in the WR6J control region. Uncertainties include statistical and systematic uncertainties (added in quadrature). The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the TR6J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the WR6J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Expected 95% CL exclusion contours for the gluino one-step variable-x
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Expected 95% CL exclusion contours for the squark one-step variable-x
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Upper limits on the signal cross section for simplified model squark one-step variable-x
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the TR2J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the WR2J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the TR4J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the WR4J control region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.
Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
One $\sigma$ band of expected exclusion limits at 95% CL from Fig 7(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRGGWZ-H.
N-1 distribution for $E_{\mathrm{T}}^{\mathrm{miss}}$of observed data and expected background in SRGGSlep-M.
N-1 distribution for $\sum{p_{\mathrm{T}}^\mathrm{jet}}$of observed data and expected background in SRUDD-ge2b.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRLQD.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSWZ-H.
N-1 distribution for $m_{\mathrm{eff}}$of observed data and expected background in SRSSSlep-H(loose).
Signal acceptance for SRGGWZ-H signal region from Fig 10(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-H signal region from Fig 15(c) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-M signal region from Fig 10(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-M signal region from Fig 15(b) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGWZ-L signal region from Fig 10(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGWZ-L signal region from Fig 15(a) in a SUSY scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-L signal region from Fig 12(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-L signal region from Fig 17(a) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-M signal region from Fig 12(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-M signal region from Fig 17(b) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRGGSlep-H signal region from Fig 12(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRGGSlep-H signal region from Fig 17(c) in a SUSY scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRUDD-1b signal region from Fig 14(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-1b signal region from Fig 19(b) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-2b signal region from Fig 14(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-2b signal region from Fig 19(c) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge2b signal region from Fig 14(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge2b signal region from Fig 19(d) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRUDD-ge3b signal region from Fig 14(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal efficiency for SRUDD-ge3b signal region from Fig 19(e) in a SUSY scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Signal acceptance for SRLQD signal region from Fig 14(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal efficiency for SRLQD signal region from Fig 19(a) in a SUSY scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Signal acceptance for SRSSWZ-L signal region from Fig 11(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-L signal region from Fig 16(a) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-ML signal region from Fig 11(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-ML signal region from Fig 16(b) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-MH signal region from Fig 11(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-MH signal region from Fig 16(c) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSWZ-H signal region from Fig 11(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSWZ-H signal region from Fig 16(d) in a SUSY scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H signal region from Fig 13(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H signal region from Fig 18(d) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-MH signal region from Fig 13(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-MH signal region from Fig 18(c) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-L signal region from Fig 13(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-L signal region from Fig 18(a) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-ML signal region from Fig 13(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-ML signal region from Fig 18(b) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal acceptance for SRSSSlep-H(loose) signal region from Fig 13(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Signal efficiency for SRSSSlep-H(loose) signal region from Fig 18(e) in a SUSY scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-H in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-M in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGWZ-L in a susy scenario where $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1400 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1000 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-L in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-M in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRGGSlep-H in a susy scenario where $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 500 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-1b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge2b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRUDD-ge3b in a susy scenario where $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 1600 GeV, $m(\tilde{t})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRLQD in a susy scenario where direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$. The masses of the superpartners involved in the process are set to $m(\tilde{g})$ = 2200 GeV, $m(\tilde{\chi_{1}^{0}})$ = 1870 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-L in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-ML in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-MH in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSWZ-H in a susy scenario where $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 800 GeV, $m(\tilde{\chi_{1}^{0}})$ = 600 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-MH in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-L in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-ML in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region SRSSSlep-H(loose) in a susy scenario where $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$. The masses of the superpartners involved in the process are set to $m(\tilde{q})$ = 1000 GeV, $m(\tilde{\chi_{1}^{0}})$ = 800 GeV. Only statistical uncertainties are shown.
Cross-section upper limits at 95% CL from Fig1(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(c) for $\tilde{g}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(f) for $\tilde{g}$ decays into anti-top and $\tilde{t}$ and $\tilde{t}$ decays via a non-zero RPV coupling $\lambda''$
Cross-section upper limits at 95% CL from Fig1(e) for direct $\tilde{\chi_{1}^{0}}$ decay into SM leptons and quarks via a non-zero RPV coupling $\lambda'$
Cross-section upper limits at 95% CL from Fig1(b) for $\tilde{q}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$
Cross-section upper limits at 95% CL from Fig1(d) for $\tilde{q}$ decays into sleptons and subsequently to SM leptons and $\tilde{\chi}^{0}_{1}$
The results of a search for direct pair production of heavy top-quark partners in 4.7 fb-1 of integrated luminosity from pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC are reported. Heavy top-quark partners decaying into a top quark and a neutral non-interacting particle are searched for in events with two leptons in the final state. No excess above the Standard Model expectation is observed. Limits are placed on the mass of a supersymmetric scalar top and of a spin-1/2 top-quark partner. A spin-1/2 top-quark partner with a mass between 300 GeV and 480 GeV, decaying to a top quark and a neutral non-interacting particle lighter than 100 GeV, is excluded at 95% confidence level.
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.