This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.
Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
A search is presented for heavy bosons decaying to Z($\nu\bar{\nu}$)V(qq'), where V can be a W or a Z boson. A sample of proton-proton collision data at $\sqrt{s} =$ 13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb$^{-1}$. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W' boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.
Simulated distributions are shown for the cosine of the decay angle of SM vector bosons in the rest frame of a parent particle with a mass (mX) of 2\TeV. Solid lines represent VBF scenarios. Dashed lines represent ggF/DY scenarios.
Distributions of mT for ggF/DY-produced resonances X of mass 4.5 TeV.
Distributions of mT for VBF-produced resonances X of mass 4.5 TeV.