Quasiexclusive neutral meson production in pN-interactions is studied in experiments with the SPHINX facility operating in a proton beam from the IHEP accelerator (Ep=70 GeV). The cross sections and the parameters of the differential distributions for πo, ω, η and Ko production in the deep fragmentation region (xF > 0.79 ÷ 0.86) are presented. The results show that such proton quasiexclusive reactions with baryon exchange may be promising in searches for exotic mesons.
No description provided.
No description provided.
Data on the graph only.
Two samples of exclusive semileptonic decays, 579 B 0 → D ∗+ ℓ − ν ℓ events and 261 B 0 → D + ℓ − ν ℓ events, are selected from approximately 3.9 million hadronic Z decays collected by the ALEPH detector at LEP. From the reconstructed differential decay rate of each sample, the product of the hadronic form factor F (ω) at zero recoil of the D (∗)+ meson and the CKM matrix element | V cb | are measured to be F D ∗+ (1)|V cb | = (31.9 ± 1.8 stat ± 1.9 syst ) × 10 −3 , F D + (1)| V cb | = (27.8 ± 6.8 stat ± 6.5 syst ) × 10 −3 . The ratio of the form factors F D + (1) and F D ∗+ (1) is measured to be F D + (1) F D ∗+ (1) = 0.87 ± 0.22 stat ± 0.21 syst . A value of | V cb | is extracted from the two samples, using theoretical constraints on the slope and curvature of the hadronic form factors and their normalization at zero recoil, with the result | V cb | = (34.4 ± 1.6 stat ± 2.3 syst ± 1.4 th ) × 10 −3 . The branching fractions are measured from the two integrated spectra to be Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (5.53 ± 0.26 stat ±0.52 syst ) %, Br ( B 0 → D ∗+ ℓ − ν ℓ ) = (2.35 ± 0.20 stat ± 0.44 syst ) %.
The formfactors are evaluated at zero recoil of D meson. Two different methods are used (see text for details). VCB is the KCM matrix element. The formfactor fitted to dependence: FF(OM) = FF(1)*(1-CONST*(OM-1)).
VCB is the KCM matrix element.
VCB is the KCM matrix element.
None
E + MU combined. Limits on CP-conserving anomalous W_W_GAMMA couplings DELTA(K) and LAMBDA (see paper). The cross section times branching ratio are presented.
A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.
No description provided.
This letter reports the results of the measurement of single photon production in the reaction e + e − → γ + invisible particles at centre-of-mass energies s =130 and 136 GeV and an integrated luminosity of 5.83 pb −1 , collected with the DELPHI detector at LEP. The signal is compatible with the prediction of the Standard Model for the process e + e − → ν ν γ , and the number of neutrino families has been determined to be N ν = 3.1 ± 0.6. Limits have been derived on anomalous neutral gauge boson couplings and on compositeness in the framework of a specific model.
SIG with C=HPC and C=FEMC correpond to the events in the barrel and forwardregion, respectively.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
.
The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
No description provided.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.
The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.
We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z$^0$ decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank $q$, decreases sharply to a negative minimum at $q=5$, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.
CONST is the cumulant to factorial moments ratio. See text for definition.
The p+p→π++d reaction is studied at excess energies between 0.275 and 3.86 MeV. Differential and total cross section were measured employing a magnetic spectrometer with nearly 4π acceptance in the center of mass system. The measured anisotropies between 0.008 and 0.29 indicate that the p wave is not negligible even so close to threshold. The data are compared to other data offering no evidence for charge symmetry breaking or time reversal violation. The s-wave and p-wave contributions at threshold are deduced.
The CONST is p-wave contribution to the cross section. The differential cross section is fitted usig the relations 4*pi*D(SIG)/D(OMEGA) = SIG + CONST*P2(COS(THETA)), where P2 denotes the Legendre polynomial.