Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have made two measurements of the mixing parameter χ d using kaons as flavour tags. Using D ∗+ K ± correlations we found χ d = 0.20 ± 0.13 ± 0.12 and from the study of (D ∗+ ℓ − ) K ± correlations we obtained χ d = 0.19 ± 0.07 ± 0.09. The branching ratio for B → D ∗+ X has been updated: Br( B → D ∗+ X) = (19.6 ± 1.9) %. We have also determined the average multiplicity of charged kaons in B 0 decays to be 0.78 ± 0.08.
Mixing parameter from counting kaon events. First (...,C=D*+K+-) and second(...,C=(D*+LEPTON-)K+-) value are obtained from a study of D*+K+- and (D*+LEPTO N-)K+- correlations respectively. Second value and the value, reported in Phys.Lett. 324B (1994) 249, were averaged, result third value (...,C=COMBINED) of the mixing parameter in the table (see text for details). In the second value (...,C=(D*+LEPTON-)K+-) the first systematic error is due to the background estimation, the branching ratio for the process B --> K+(K-) X, experimental cuts, and the second one is due to to the uncertainty on the branching ratio for the processes D0 --> K+- X.
No description provided.
We have analysed a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment at the CERN collider. We have studied the production of charged particles with transverse momenta ( p T ) up to 25 GeV/c. The results are in agreement with QCD predictions. The rise of 〈 p T 〉 with charged particle multiplicity may be related to changing production of low p T particles.
No description provided.
No description provided.
No description provided.
From a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment and from other published data at the CERN S p p S collider we have estimated the relative production of π ± , π 0 , K ± , K S 0 , Λ, Λ , p and p . We obtain a meson over baryon ratio M B = 6.4 ± 1.1 . From the K S 0 π ± ratio we measure the strangeness suppression factor λ = 0.29 ± 0.02 ± 0.01 which, combining with other available data provides a new world average of 0.29 ± 0.015. Both the K S 0 π ± ratio and the strangeness suppression factor λ as a function of s are investigated, and an extrapolation to the LHC energy is performed.
Extrapolation to pt=0.
CONST is strangeness suppression factor, extracted from KS/PI+- ratio (see text).
CP violation has been observed as a time-dependent rate asymmetry between the decays ${⩈erline K}^0 ⌝ghtarrow ≪^{0} ≪^{0}$ and K0 → π0π{0}, where the neutral kaons are produced with definite and individually known strangeness in ${⋏r p}p ⌝ghtarrow{⩈erline K}^0 K^+≪^- $ or p̅p → K0 K− π+. A special technique for the data analysis has been developed. The values obtained for ϕ00 and ¦ η00¦ are in agreement with those of previous measurements of CP violation.
No description provided.
The Compton scattering cross section on the proton has been measured at laboratory angles of 90$~\circ$ and 135$~\circ$ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, $\bar{\alpha}$ and $\bar{\beta}$ respectively, of the proton. We find $$\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10~{-4} \: {\rm fm}~3,$$ in agreement with a model-independent dispersion sum rule, and $$\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10~{-4} \: {\rm fm}~3,$$ where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.
Tagged photons.
Untagged photons.
No description provided.
The neutron transmission through a thorogenic liquid 208Pb sample 2 in. thick has been measured in the neutron energy range between 0.1 and 360 eV at the ORNL neutron source ORELA. Analyzing the shape of the transmission spectra as a function of neutron energy, agreement was found with the predictions by the atomic form factor. With a sensitivity for the mean squared charge radius of the neutron 〈rn2〉 as high as 3%, a very reliable and also accurate result of 〈rn2〉=−0.113±0.003±0.004fm2 was extracted. For the neutron-electron scattering length we obtained bne=(−1.31±0.03±0.04)×10−3fm.
CONST(NAME=SCATTERING LENGTH) is related to the mean sqared charge radius of the neutron by <r(N)**2> = c(n) * CONST(NAME=SCATTERING LENGTH), where c(n) = 86.387 fm.
We present results from CDF and D\O\ on $W\gamma$ and $Z\gamma$ productions in $p\bar{p}$ collisions at $\sqrt{s}=1.8{\rm TeV}.$ The goal of the analyses is to test the non-abelian self-couplings of the $W$, $Z$ and photon, one of the most direct consequences of the $SU(2)_L\otimes U(1)_Y$ gauge symmetry. We present direct measurements of $WW\gamma$ couplings and limits on $ZZ\gamma$ and $Z\gamma\gamma$ couplings, based on $p\bar{p}\rightarrow \ell\nu\gamma + X$ and $p\bar{p}\rightarrow \ell\ell\gamma+X$ events, respectively, observed during the 1992--1993 run of the Fermilab Tevatron Collider.
CDF data.. DELTA(R) = SQRT( DELTA(ETARAP(LEPTON,GAMMA))**2 + DELTA(PHI(LEPTON,GAMMA))**2 ) > 0.7.
CDF data.. DELTA(R) = SQRT( DELTA(ETARAP(LEPTON,GAMMA))**2 + DELTA(PHI(LEPTON,GAMMA))**2 ) > 0.7.
CDF data.. E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper). Limits on CP-violating parameters are within 3-6% of obtained.
The Beijing Spectrometer (BES) experiment has observed purely leptonic decays of the Ds meson in the reaction e+e−→Ds+Ds− at a c.m. energy of 4.03 GeV. Three events are observed in which one Ds decays hadronically to φπ, K¯*0K, or K¯0K, and the other decays leptonically to μνμ or τντ. With the assumption of μ−τ universality, values of the branching fraction, B(Ds→μνμ)=(1.5−0.6−0.2+1.3+0.3)%, and the Ds pseudoscalar decay constant, fDs=(4.3−1.3−0.4+1.5+0.4)×102 MeV, are obtained.
No description provided.
In this table CONST is the pseudoscalar decay constant, f_[D/S].
We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8<gW<3.1 for qWe=1 and −0.6<qWe<2.7 for gW=2 at 95% C.L.
E + MU combined. Limits on CP-conserving anomalous WWGAMMA couplings DELTA(K) and LAMBDA (see paper).
We present a measurement and comparison of the χc1 and χc2 production cross sections determined from interactions of 300-GeV/c π± and p with a Li target. We find χc1χc2 production ratios of 0.52−0.27+0.57 and 0.08−0.15+0.25 from reactions induced by π± and p, respectively.
The cross section per nucleon.
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(PT**2)= CONST*EXP(SLOPE*PT), D(SIG)/D(XL) = CONST*(1-(XL-CONST(C=X0))**2)**POWER(C=1) , and D(SIG)/D(XL) = CONST*(1-ABS(XL-CONST(C=XC)))**POWER(C=2).
The cross section per nucleon. The differential cross section is fitted by the equation : D(SIG)/D(COS(THETA)) = CONST*(1+CONST*COS(THETA)**2), where THETA is the angle between the MU+ and beam momentum in the CHI/C rest frame.