Date

Subject_areas

Measurement of the very rare $K^+\rightarrow\pi^+\nu\bar{\nu}$ decay

The NA62 collaboration Cortina Gil, Eduardo ; Minucci, Elisa ; Padolski, Sergey ; et al.
JHEP 06 (2021) 093, 2021.
Inspire Record 1854186 DOI 10.17182/hepdata.106641

The NA62 experiment reports the branching ratio measurement BR$(K^+ \rightarrow \pi^+ \nu\bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\rm stat} \pm 0.9_{\rm syst}) \times 10 ^{-11}$ at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016-2018. This provides evidence for the very rare $K^+ \rightarrow \pi^+ \nu\bar{\nu}$ decay, observed with a significance of 3.4$\sigma$. The experiment achieves a single event sensitivity of $(0.839\pm 0.054)\times 10^{-11}$, corresponding to 10.0 events assuming the Standard Model branching ratio of $(8.4\pm1.0)\times10^{-11}$. This measurement is also used to set limits on BR($K^+ \to \pi^+ X$), where $X$ is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.

3 data tables

Observed and expected upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL.

Observed upper limits on branching ratio \(K^{+}\rightarrow\pi^{+}X\) at 90% CL as functions of X mass and lifetime.

Exclusion region limits on coupling strength \(sin^{2}\theta\) at 90% CL as a function of X mass, for visible X decays.


Search for the decay of the Higgs boson to a $Z$ boson and a light pseudoscalar particle decaying to two photons

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 850 (2024) 138536, 2024.
Inspire Record 2729877 DOI 10.17182/hepdata.145855

A search for the decay of the Higgs boson to a $Z$ boson and a light, pseudoscalar particle, $a$, decaying respectively to two leptons and to two photons is reported. The search uses the full LHC Run 2 proton-proton collision data at $\sqrt{s}=13$ TeV, corresponding to 139 fb$^{-1}$ collected by the ATLAS detector. This is one of the first searches for this specific decay mode of the Higgs boson, and it probes unexplored parameter space in models with axion-like particles (ALPs) and extended scalar sectors. The mass of the $a$ particle is assumed to be in the range 0.1-33 GeV. The data are analysed in two categories: a merged category where the photons from the $a$ decay are reconstructed in the ATLAS calorimeter as a single cluster, and a resolved category in which two separate photons are detected. The main background processes are from Standard Model $Z$ boson production in association with photons or jets. The data are in agreement with the background predictions, and upper limits on the branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a\to\gamma\gamma$ are derived at the 95% confidence level and they range from 0.08% to 2% depending on the mass of the $a$ particle. The results are also interpreted in the context of ALP models.

5 data tables

Post-fit distribution for $m_{\gamma\gamma}$ for the resolved category in number of events per 0.2 GeV for data. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

Post-fit distribution for $m_{\gamma\gamma}$ for the resolved category in number of events per 0.2 GeV for a signal distribution for $m_a = 9$ GeV, and the signal plus background fit with its background component. The branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a $->$ \gamma \gamma$ is assumed to be 50%. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

Post-fit final discriminating variable $\Delta R_{Z\gamma}$ in the signal region of the merged category. Signal distributions for $m_a$ values used in this category are overlayed for comparison, assuming a branching ratio of the Higgs boson decay to $Za$ times the branching ratio $a $->$ \gamma \gamma$ of 100%. The signal yields have been multiplied by 10 for better visibility. The figure uses $pp$ collision data at $\sqrt{s}=13$ TeV corresponding to 139 fb$^{-1}$.

More…