Date

Measurement of negatively charged pion spectra in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c

The NA61/SHINE collaboration Abgrall, N. ; Aduszkiewicz, A. ; Ali, Y. ; et al.
Eur.Phys.J.C 74 (2014) 2794, 2014.
Inspire Record 1257740 DOI 10.17182/hepdata.66279

We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.

1 data table match query

Transverse momentum spectra of $\pi^-$ mesons produced in inelastic $p p$ interactions at 158 GeV in various rapidity ranges.


Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 072302, 2015.
Inspire Record 1326911 DOI 10.17182/hepdata.66021

Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.

1 data table match query

No description provided.


Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 748 (2015) 392-413, 2015.
Inspire Record 1334140 DOI 10.17182/hepdata.67349

Measurements of the centrality and rapidity dependence of inclusive jet production in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV proton--lead ($p$+Pb) collisions and the jet cross-section in $\sqrt{s} = 2.76$ TeV proton--proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb$^{-1}$ and 4.0 pb$^{-1}$, respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The $p$+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval $-4.9 < \eta < -3.2$ in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum ($p_\mathrm{T}$) for minimum-bias and centrality-selected $p$+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a $p_\mathrm{T}$-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all $p_\mathrm{T}$ at forward rapidities and for large $p_\mathrm{T}$ at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton-nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton-parton kinematics.

1 data table match query

Jet RCP for 40-60%/60-90% p+Pb events, within the centre of mass rapidity +3.6 to +4.4 (positive denotes downstream proton direction).


Multi-strange baryon production in p-Pb collisions at $\sqrt{s_\mathbf{NN}}=5.02$

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 758 (2016) 389-401, 2016.
Inspire Record 1411084 DOI 10.17182/hepdata.73011

The multi-strange baryon yields in Pb--Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, $\Xi$ and $\Omega$ production rates have been measured with the ALICE experiment as a function of transverse momentum, ${p_{\rm T}}$, in p-Pb collisions at a centre-of-mass energy of ${\sqrt{s_{\rm NN}}}$ = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/$c<{p_{\rm T}} <$7.2 GeV/$c$ and 0.8 GeV/$c<{p_{\rm T}}<$ 5 GeV/$c$, for $\Xi$ and $\Omega$ respectively, in the common rapidity interval -0.5 $<{y_{\rm CMS}}<$ 0. Multi-strange baryons have been identified by reconstructing their weak decays into charged particles. The ${p_{\rm T}}$ spectra are analysed as a function of event charged-particle multiplicity, which in p-Pb collisions ranges over one order of magnitude and lies between those observed in pp and Pb-Pb collisions. The measured ${p_{\rm T}}$ distributions are compared to the expectations from a Blast-Wave model. The parameters which describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity p-Pb. The yield of hyperons relative to charged pions is studied and compared with results from pp and Pb-Pb collisions. A statistical model is employed, which describes the change in the ratios with volume using a canonical suppression mechanism, in which the small volume causes a species-dependent relative reduction of hadron production. The calculations, in which the magnitude of the effect depends on the strangeness content, show good qualitative agreement with the data.

1 data table match query

OmegaPlus yield as a function of charged particle multiplicity per unit pseudorapidity.


Identified hadron spectra at large transverse momentum in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 637 (2006) 161-169, 2006.
Inspire Record 709170 DOI 10.17182/hepdata.85695

We present the transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions at \sqrts_NN = 200 GeV. The spectra are measured around midrapidity (|y| &lt; 0.5) over the range of 0.3 &lt; pT &lt; 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the Time Projection Chamber and Time-of-Flight in STAR. The charged pion and proton+anti-proton spectra at high pT in p+p and d+Au collisions are in good agreement with a phenomenological model (EPOS) and with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p+p collisions follow xT-scalings for the momentum range where particle production is dominated by hard processes (pT > 2 GeV/c). The nuclear modification factor around midrapidity are found to be greater than unity for charged pions and to be even larger for protons at 2 &lt; pT &lt; 5 GeV/c.

1 data table match query

Nuclear modification factors $R_{dAu}$ for $p + \bar{p}$ production in the mid rapidity region, $|y|<0.5$. There is an overall additional normalization uncertainty of the order of 17%. For the measurement of $R_{dAu}$ there is an additional uncertainty of 5% due to uncertainty on $N_{bin}$ for minbias collisions.


K^0_S and {\Lambda} production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 111 (2013) 222301, 2013.
Inspire Record 1243863 DOI 10.17182/hepdata.61857

The ALICE measurement of K$^0_{\rm S}$ and $\rm\Lambda$ production at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV is presented. The transverse momentum ($p_{\rm T}$) spectra are shown for several collision centrality intervals and in the $p_{\rm T}$ range from 0.4 GeV/$c$ (0.6 GeV/$c$ for $\rm\Lambda$) to 12 GeV/$c$. The $p_{\rm T}$ dependence of the $\rm \Lambda$/K$^0_{\rm S}$ ratios exhibits maxima in the vicinity of 3 GeV/$c$, and the positions of the maxima shift towards higher $p_{\rm T}$ with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate $p_{\rm T}$ is not observed in pp interactions at sqrt(s) = 0.9 TeV and at sqrt(s) = 7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured $p_{\rm T}$ spectra above 2 GeV/$c$ progressively decouple from hydrodynamical-model calculations. For higher values of $p_{\rm T}$, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the $p_{\rm T}$ dependence of the $\rm\Lambda$/K$^0_{\rm S}$ ratio.

1 data table match query

Total integrated mid-rapidity yields for K0Short in the rapidity range -0.5<y<0.5 for different centrality intervals. For each centrality interval, the fraction of yield extrapolated in the region pT<0.4 GeV/c (ExtFrac) is also reported.


Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 77 (2008) 024912, 2008.
Inspire Record 768530 DOI 10.17182/hepdata.57373

All of the experimental data points presented in the original paper are correct and unchanged (including statistical and systematic uncertainties). However, herein we correct a comparison between the experimental data and a theoretical picture, because we discovered a mistake in the code used. All of the most probable sigma_breakup values differ by less than 0.4 mb from those originally presented. However, the one standard deviation uncertainties (that include contributions from both the statistical and systematic uncertainties on the experimental data points) are approximately 30-60% larger than originally reported. We give a table of the new comparison results and corrected versions of Figs. 8-11 of the original paper and we note that no correction is needed for results from the data-driven method in Fig. 13.

1 data table match query

Breakup cross section of c-c_bar pairs inside cold nuclear matter for different ranges of rapidity.The breakup cross section is calculated with two models of shadowing for nuclear PDFs ; the EKS model and the NDSG model. The uncertainties given, containing statistical and systematical error, are corresponding to one standard deviation.


Production of light-flavor hadrons in pp collisions at $\sqrt{s}$ = 7 and $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 256, 2021.
Inspire Record 1797443 DOI 10.17182/hepdata.100303

The production of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}^{*}(892)^{0}$, $\rm{p}$, $\phi(1020)$, $\Lambda$, $\Xi^{-}$, $\Omega^{-}$, and their antiparticles was measured in inelastic proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\rm{T}}$ distributions of $\rm{K}^{0}_{S}$, $\Lambda$, and $\overline{\Lambda}$ in inelastic pp collisions at $\sqrt{s}$ = 7 TeV are reported here for the first time. The $p_{\rm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\leq p_{\rm{T}}\leq20$ GeV/$c$, depending on the particle species. The $p_{\rm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\rm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\rm{T}}\equiv2p_{\rm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7 to 13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_{\rm{T}}$-differential cross sections of $\pi^{\pm}$, $\rm{K}^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) at high $p_{\rm{T}}$.

1 data table match query

$(K^{*0} + \overline{K^{*0}})/(\pi^{+}+\pi^{-})$ particle ratio as a function of $p_{\rm T}$ measured in pp collisions at $\sqrt{s}$ = 13 TeV.


Multiplicity dependence of light-flavor hadron production in pp collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Phys.Rev.C 99 (2019) 024906, 2019.
Inspire Record 1684320 DOI 10.17182/hepdata.84282

Comprehensive results on the production of unidentified charged particles, $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}$*(892)$^{0}$, $\rm{p}$, $\overline{\rm{p}}$, $\phi$(1020), $\Lambda$, $\overline{\Lambda}$, $\Xi^{-}$, $\overline{\Xi}^{+}$, $\Omega^{-}$ and $\overline{\Omega}^{+}$ hadrons in proton-proton (pp) collisions at $\sqrt{s}$ = 7 TeV at midrapidity ($|y| < 0.5$) as a function of charged-particle multiplicity density are presented. In order to avoid auto-correlation biases, the actual transverse momentum ($p_{\rm{T}}$) spectra of the particles under study and the event activity are measured in different rapidity windows. In the highest multiplicity class, the charged-particle density reaches about 3.5 times the value measured in inelastic collisions. While the yield of protons normalized to pions remains approximately constant as a function of multiplicity, the corresponding ratios of strange hadrons to pions show a significant enhancement that increases with increasing strangeness content. Furthermore, all identified particle to pion ratios are shown to depend solely on charged-particle multiplicity density, regardless of system type and collision energy. The evolution of the spectral shapes with multiplicity and hadron mass shows patterns that are similar to those observed in p-Pb and Pb-Pb collisions at LHC energies. The obtained $p_{\rm{T}}$ distributions and yields are compared to expectations from QCD-based pp event generators as well as to predictions from thermal and hydrodynamic models. These comparisons indicate that traces of a collective, equilibrated system are already present in high-multiplicity pp collisions.

1 data table match query

Transverse momentum spectra of $K^{+} + K^{-}$ in V0M multiplicity class II


Multiplicity dependence of $\pi$, K, and p production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 693, 2020.
Inspire Record 1784041 DOI 10.17182/hepdata.96821

This paper presents the measurements of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{p}$ and $\bar{\rm{p}}$ transverse momentum ($p_{\rm{T}}$) spectra as a function of charged-particle multiplicity density in proton-proton (pp) collisions at $\sqrt{s}$ = 13 TeV with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy dependence of light-flavour particle production. The measurements reported here cover a $p_{\rm{T}}$ range from 0.1 GeV/$c$ to 20 GeV/$c$ and are done in the rapidity interval $|y|<0.5$. The $p_{\rm{T}}$-differential particle ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at $\sqrt{s}$ = 7 TeV, which is qualitatively described by some of the hydrodynamical and pQCD-inspired models discussed in this paper. Furthermore, the $p_{\rm{T}}$-integrated hadron-to-pion yield ratios measured in pp collisions at two different center-of-mass energies are consistent when compared at similar multiplicities. This also extends to strange and multistrange hadrons, suggesting that, at LHC energies, particle hadrochemistry scales with particle multiplicity the same way under different collision energies and colliding systems.

1 data table match query

Transverse momentum spectra ratios ($K^{+} + K^{-}$)/($\pi^{+} + \pi^{-}$) in V0M multiplicity classes