We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary lead target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles 20 to 125 degrees. Cross-sections on lead nuclei are compared with cross-sections on beryllium, copper, and tantalum nuclei.
Double-differential inclusive cross section for PI- production in P PB interactions at beam momentum 3 GeV/c in the polar angle range 75 to 90 degrees.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from \pm 3 GeV/c to \pm 15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 20 to 30 degrees.
Measurements of the double-differential proton production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.05 rad < \theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5 % of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary copper target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 DEG.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
We report on double-differential inclusive cross-sections of the production of secondary protons and charged pions, in the interactions with a 5% interaction length thick stationary beryllium target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees.
Double differential inclusive cross section for the reaction P BE --> PI- X with a 3 GeV beam and production angles 75 to 90 degrees.
Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yields estimates.
No description provided.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tantalum target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.
Measured cross section as a function of PT for PI- production from a P beam of momentum 3 GeV/c in the angular range 75 to 90 DEG.