Results on the study of D(1285)→K + K − π 0 -decay are presented. The K + K − effective mass spectrum is measured with statistics which are by an order of magnitude higher than in the previous data. From the analysis of the differential spectrum d N d M KK (in the framework of the δ-dominance model) the δ-meson effective width is Γ δ >180MeV/ c 2 at √ s =1 GeV/ c 2 , which means a strong coupling of the δ-meson with hadrons.
No description provided.
No description provided.
No description provided.
None
.
.
.
A partial wave analysis of theK\(\bar K\) system produced by 8.25 GeV/cK− mesons in the reaction\(K^ -p \to K\bar K\Lambda ^{ 0} \) has been performed, taking into account the information provided by the Λ0 decay. Thef′ region is dominated byD0(−) andD1(+) waves. We see no evidence for the production of new 0++ states in the mass region 1.05 to 1.75 GeV.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .
Data read from graph.. Errors are the square roots of the number of events.
Data read from graph.. Errors are the square roots of the number of events.
The reaction π − p→ π 0 π 0 n has been measured with a 648 channel hodoscope spectrometer for the detection of the four γ's from the π 0 decays. The π 0 π 0 D-wave is fully compatible with the f 0 contribution as it is determined in high-statistics π + π − experiments. The magnitude of the π 0 π 0 S-wave and the cosinus of its phase angle (relative to the known D-wave) are determined from fits to the π 0 π 0 angular distributions. Argand diagrams for the I = 0 amplitude S 0 are given for the range 1000 to 1500 MeV/ c 2 . Two solutions exist. One exceeds the unitarity limit above 1200 MeV/ c 2 . The other remains within the unitarity limit and is nearly elastic up to 1450 MeV/ c 2 . It indicates an S 0 wave resonance around 1300 MeV/ c 2 .
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
Data read from graph. Systematic error on M is of order of 2% or less.
Data read from graph.
No description provided.
None
No description provided.
No description provided.
No description provided.