Showing 7 of 17 results
This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.
This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.
Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
Distribution of the NN output in the $\geq$1fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
Distribution of the NN output in the $t\bar{t}\gamma\,$CR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
Total event yield in the $W\gamma\,$CR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
Distribution of the scalar sum of the jet transverse momenta in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the $\eta$ of the $b$-tagged jet in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions.
Distribution of the reconstructed top-quark mass in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the $p_{\mathrm{T}}$ of the top-quark+photon system in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the photon $p_{\mathrm{T}}$ in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the photon $\eta$ in the 0fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions.
Distribution of the scalar sum of the jet transverse momenta in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the invariant mass of the $b$-tagged jet and the highest-$p_{\mathrm{T}}$ forward jet in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of $p_{\mathrm{T}}$ of the highest-$p_{\mathrm{T}}$ forward jet in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the difference in $\eta$ between the highest-$p_{\mathrm{T}}$ forward jet and the photon in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the energy of the system formed by the highest-$p_{\mathrm{T}}$ forward jet and the photon in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the $\eta$ of the $b$-tagged jet in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions.
Distribution of the reconstructed top-quark mass in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the $p_{\mathrm{T}}$ of the top-quark and photon system in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the photon $p_{\mathrm{T}}$ in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions and the last bin includes the overflow.
Distribution of the photon $\eta$ in the $\geq$1fj$\,$SR in data and for the sum of all processes expectations before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions.
Ordered list of the 30 systematic uncertainties with the largest impact on the measured signal normalisation in the fit to data in the parton-level measurement considered as nuisance parameters (NPs) in the profile-likelihood fit. The column "NP value, error" corresponds to the nominal best-fit values and the corresponding uncertainties. The impact of each NP, $\Delta\sigma$/$\sigma_{\mathrm{pred}}$, is computed by comparing the nominal best-fit value of the POI ($\sigma$/$\sigma_{\mathrm{pred}}$) with the result of the fits when fixing the considered NP to its best-fit value shifted by its pre-fit and post-fit uncertainties. The corresponding impacts are listed in the "POI impact prefit high/low" and "POI impact high/low" columns, respectively. The "MC stat." NPs represent the MC statistical uncertainty and they enter the likelihood with a Poisson term, while all the other NPs enter the likelihood via a Gaussian term.
Ordered list of the 30 systematic uncertainties with the largest impact on the measured signal normalisation in the fit to data in the particle-level measurement considered as nuisance parameters (NPs) in the profile-likelihood fit. The column "NP value, error" corresponds to the nominal best-fit values and the corresponding uncertainties. The impact of each NP, $\Delta\sigma$/$\sigma_{\mathrm{pred}}$, is computed by comparing the nominal best-fit value of the POI ($\sigma$/$\sigma_{\mathrm{pred}}$) with the result of the fits when fixing the considered NP to its best-fit value shifted by its pre-fit and post-fit uncertainties. The corresponding impacts are listed in the "POI impact prefit high/low" and "POI impact high/low" columns, respectively. The "MC stat." NPs represent the MC statistical uncertainty and they enter the likelihood with a Poisson term, while all the other NPs enter the likelihood via a Gaussian term.
This table lists the kinematic requirements on parton-level objects used to define of the fiducial phase space for the parton-level measurement. Frixione isolation ($\href{https://arxiv.org/abs/hep-ph/9801442}{\text{hep-ph/9801442}}$) with a chosen radius of $\Delta R = 0.2$ is applied to photons ($\gamma$). The measured fiducial parton-level cross section is $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b) = 688\pm 23(\text{stat.})^{+75}_{-71}(\text{syst.})\,$fb.
This table lists the kinematic requirements on particle-level objects used to define of the fiducial phase space for the particle-level measurement. The particle level objects are photons ($\gamma$) not from a hadron decay, neutrinos not from a hadron decay ($\nu$), prompt electrons and muons ($\ell$) "dressed" by adding close-by ($\Delta R < 0.1$) photons, and anti-$k_t$ $R = 0.4$ jets built from stable particles ($\tau > 30\,$ps) and tau leptons excluding neutrinos and prompt dressed muons. Jets are $b$-tagged ($b$-jet) using ghost-matched $b$-hadrons with $p_{\text{T}} > 5\,$GeV. Apart from the kinematic requirements, isolation and overlap removal criteria are applied. Jets within $\Delta R = 0.4$ of a photon are removed if the $p_{\text{T}}$ of charged particles within $\Delta R = 0.3$ of the photon is smaller than $10\,\%$ of its $p_{\text{T}}$. Jets within $\Delta R = 0.4$ of a lepton are removed. Events are removed where a photon is close ($\Delta R < 0.4$) to a lepton or a surviving jet. The measured fiducial particle-level cross section is $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q} = 303\pm 9(\text{stat.})^{+33}_{-32}(\text{syst.})\,$fb.
A measurement of single top-quark production in the s-channel is performed in proton$-$proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The analysis is performed on events with an electron or muon, missing transverse momentum and exactly two $b$-tagged jets in the final state. A discriminant based on matrix element calculations is used to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and $W$-boson production in association with jets. The observed (expected) signal significance over the background-only hypothesis is 3.3 (3.9) standard deviations, and the measured cross-section is $\sigma=8.2^{+3.5}_{-2.9}$ pb, consistent with the Standard Model prediction of $\sigma^{\mathrm{SM}}=10.32^{+0.40}_{-0.36}$ pb.
Result of the s-channel single-top cross-section measurement, in pb. The statistical and systematic uncertainties are given, as well as the total uncertainty. The normalisation factors for the $t\bar{t}$ and $W$+jets backgrounds are also shown, with their total uncertainties.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the signal region, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $W$+jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $t\bar{t}$ 3-jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of ${E}_{T}^{miss}$ after the fit of the multijet backgrounds, in the electron channel, in the $t\bar{t}$ 4-jets VR, without applying the cut on ${E}_{T}^{miss}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of $m_{T}^{W}$ after the fit of the multijet backgrounds, in the muon channel, in the signal region, without applying the cut on $m_{T}^{W}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of $m_{T}^{W}$ after the fit of the multijet backgrounds, in the muon channel, in the $W$+jets VR, without applying the cut on $m_{T}^{W}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of $m_{T}^{W}$ after the fit of the multijet backgrounds, in the muon channel, in the $t\bar{t}$ 3-jets VR, without applying the cut on $m_{T}^{W}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Distribution of $m_{T}^{W}$ after the fit of the multijet backgrounds, in the muon channel, in the $t\bar{t}$ 4-jets VR, without applying the cut on $m_{T}^{W}$. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit. The last bin includes the overflow. The uncertainty band indicates the simulation's statistical uncertainty, the normalisation uncertainties for different processes ($40$ % for $W$+jets production, $30$ % for multijet background and $6$ % for top-quark processes) and the multijet background shape uncertainty in each bin, summed in quadrature. The lower panel of the figure shows the ratio of the data to the prediction.
Expected distributions of the MEM discriminant $P(S|X)$ in the SR, for the s-channel single-top signal, and for the $t\bar{t}$ and $W$+jets backgrounds, for MEM discriminant values larger than $2.0\times10^{-4}$. Each distribution is normalised to unity. The binning is the same as the optimised binning used in the signal extraction fit, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the $W$+jets VR. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit presented in Section 5 in the paper. The uncertainty band indicates the simulation's statistical uncertainty and the normalisation uncertainties for the various processes in each bin, summed in quadrature. The ratio of the observed number to the predicted number of events in each bin is shown in the lower panel of the figure, with different vertical axis ranges. The binning is the same as the optimised binning used in the signal extraction fit described in Section 8 in the paper, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the $t\bar{t}$ 3-jets VR. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit presented in Section 5 in the paper. The uncertainty band indicates the simulation's statistical uncertainty and the normalisation uncertainties for the various processes in each bin, summed in quadrature. The ratio of the observed number to the predicted number of events in each bin is shown in the lower panel of the figure, with different vertical axis ranges. The binning is the same as the optimised binning used in the signal extraction fit described in Section 8 in the paper, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the $t\bar{t}$ 4-jets VR. Simulated events are normalised to the expected number of events given the integrated luminosity, after applying the normalisation factors obtained in the multijet fit presented in Section 5 in the paper. The uncertainty bands indicate the simulation's statistical uncertainty and the normalisation uncertainties for the various processes in each bin, summed in quadrature. The ratio of the observed number to the predicted number of events in each bin is shown in the lower panel of the figure, with different vertical axis ranges. The binning is the same as the optimised binning used in the signal extraction fit described in Section 8 in the paper, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the SR before the fit to data, for MEM discriminant values larger than $2.0\times10^{-4}$. The lower panel of the figure shows the ratio of the data to the prediction, with different vertical axis ranges. The uncertainty band indicates the total uncertainties and their correlations in each bin. The uncertainties in the $t\bar{t}$ and $W$+jets normalisation factors, as well as in the s-channel signal cross-section, are not defined pre-fit and therefore not included. The binning is the same as the optimised binning used in the fit, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the SR after the fit to data, for MEM discriminant values larger than $2.0\times10^{-4}$. The lower panel of the figure shows the ratio of the data to the prediction, with different vertical axis ranges. The uncertainty band indicates the total uncertainties and their correlations in each bin. The binning is the same as the optimised binning used in the fit, resulting in a non-linear horizontal scale.
Distribution of the MEM discriminant $P(S|X)$ in the SR after the fit to data, for MEM discriminant values larger than $2.0\times10^{-4}$, after subtraction of all backgrounds. The fitted distribution for the simulation of the signal is shown together with the post-fit uncertainty in the backgrounds. The binning is the same as the optimised binning used in the fit, resulting in a non-linear horizontal scale.
Pre-fit and post-fit event yields in the SR, for MEM discriminant values larger than $2.0\times10^{-4}$. The central value of the event yield for each process is calculated by summing the values of the discriminant bin contents, using the nominal expected yield for the pre-fit value, and the best-fit estimate for the post-fit value. The error includes statistical and systematic uncertainties summed in quadrature. All sources of systematic uncertainties are included, taking into account correlations and anti-correlations in the post-fit case. The uncertainties in the $t\bar{t}$ and $W$+jets normalisation factors, as well as in the s-channel signal cross-section, are not defined pre-fit and therefore only included in the post-fit uncertainties.
Observed impact of the different sources of uncertainty on the measured s-channel signal cross-section, grouped by categories. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root. The 'Systematic uncertainties' category combines all sources of systematic uncertainties. The statistical uncertainty is obtained by repeating the fit after having fixed all nuisance parameters, including the $t\bar{t}$ and $W$+jets normalisation factors. 'Total' gives the total uncertainty on the measurement.
Observed impact of the different sources of $t\bar{t}$ modelling uncertainty on the measured s-channel signal cross-section. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root. 'PS & had.' refers to the parton shower and hadronisation model, and 'ME/PS matching' to the matching of the ME to the parton shower.
Observed impact of the different sources of s-channel modelling uncertainty on the measured s-channel signal cross-section. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root. 'PS & had.' refers to the parton shower and hadronisation model, as described in Section 7 in the paper.
Observed impact of the different sources of t-channel modelling uncertainty on the measured s-channel signal cross-section. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root. 'PS & had.' refers to the parton shower and hadronisation model, as described in Section 7 in the paper.
Observed impact of the different sources of $tW$ modelling uncertainty on the measured s-channel signal cross-section, grouped by categories. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root. 'PS & had.' refers to the parton shower and hadronisation model, and '$t\bar{t}$ overlap' to the algorithm removing the overlap between $tW$ and $t\bar{t}$ production at NLO, as described in Section 7 in the paper.
Observed impact of the different sources of PDF uncertainties on the measured s-channel signal cross-section, grouped by categories. The impact of each category is obtained by repeating the fit after having fixed the set of nuisance parameters corresponding to that category, subtracting the square of the resulting uncertainty from the square of the uncertainty found in the full fit, and calculating the square root.
Comparison between data and prediction after the fit to data in the signal region for the leading-jet $p_{T}$. The last bin includes the overflow. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the leading-jet $\eta$. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the subleading-jet $p_{T}$. The last bin includes the overflow. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the subleading-jet $\eta$. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the lepton $p_{T}$. The last bin includes the overflow. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the lepton $\eta$. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the ${E}_{T}^{miss}$. The last bin includes the overflow. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Comparison between data and prediction after the fit to data in the signal region for the $m_{T}^{W}$. The last bin includes the overflow. The uncertainty band includes all uncertainties and their correlations. The lower panel of the figure shows the ratio of the data to the prediction.
Nuisance parameters ranked according to their post-fit impacts on the best-fit value of the ratio $\mu$ of the measured cross-section to the predicted cross-section. In the figure, only the 20 nuisance parameters with the largest post-fit impacts are shown. The empty (solid) blue rectangles illustrate the pre-fit (post-fit) impact on $\mu$, corresponding to the upper axis. The pre-fit (post-fit) impact of each nuisance parameter, $\Delta\mu$, is calculated as the difference in the fitted value of $\mu$ between the nominal fit and the fit when fixing the corresponding nuisance parameter to $\hat{\theta}\pm\Delta\theta$ ($\hat{\theta}\pm\Delta\hat{\theta}$), where $\hat{\theta}$ is the best-fit value of the nuisance parameter and $\Delta\theta$ ($\Delta\hat{\theta}$) is its pre-fit (post-fit) uncertainty. Several systematic uncertainties are split into different nuisance parameters, which are indicated by NP. JES (JER) indicates jet energy scale (resolution), and $\gamma$ indicates a nuisance parameter associated to the MC statistics in one of the 18 bins numbered from 0 to 17. The black points show the best-fit values of the nuisance parameters, with the error bars representing the post-fit uncertainties. Each nuisance parameter is shown wrt. its nominal value, $\theta_0$, and in units of its pre-fit uncertainty, except the free-floating normalisation factors of the $t\bar{t}$ and $W$+jets backgrounds, and the parameters associated to the MC statistics in each bin, for which the post-fit values and uncertainties are shown.
Correlation matrix of the nuisance parameters and of the ratio $\mu$ of the measured cross-section to the predicted cross-section. The correlations are given after the fit to data. In the figure, only the parameters which have a correlation of at least 0.2 with any other parameter are shown.
Distribution of the MEM discriminant $P(S|X)$ in the SR for MEM discriminant values larger than $2.0\times10^{-4}$, for the collision data used for the measurement, and for 1000 pseudo-data replicas, generated using a bootstrapping technique, in order to assess the statistical correlations between this measurement and others, for the purpose of combinations. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the <a href="https://zenodo.org/record/5361038">BootstrapGenerator</a> software package , which implements a technique described in <a href="https://cds.cern.ch/record/2759945/">ATL-PHYS-PUB-2021-011</a>. The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. Each pseudo-data replica is assigned an index, ranging from 0 to 999, corresponding to the random number index used consistently for each observed data event.
Measured values of the signal cross-section and of the $t\bar{t}$ and $W$+jets normalisation factors, obtained by statistical-only fits to the collision data used for the measurement, and to 1000 pseudo-data replicas, generated using a bootstrapping technique, in order to assess the statistical correlations between this measurement and others, for the purpose of combinations. The central values and their statistical uncertainties are obtained by repeating the fit after having fixed all nuisance parameters, except the $t\bar{t}$ and $W$+jets normalisation factors, which are let free-floating (unlike for the statistical uncertainty on the cross-section quoted in the paper). The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the <a href="https://zenodo.org/record/5361038">BootstrapGenerator</a> software package , which implements a technique described in <a href="https://cds.cern.ch/record/2759945/">ATL-PHYS-PUB-2021-011</a>. The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. Each pseudo-data replica is assigned an index, ranging from 0 to 999, corresponding to the random number index used consistently for each observed data event.
A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Post-fit plot of $H_\text{T}(\text{jets})$ in the SR$2\ell$ Dec from a signal-blinded background-only fit.
Post-fit plot of $m(t_\text{SM}, b\text{-jet}_0)$ in the SR$2\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Dec from a signal-blinded background-only fit.
Post-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Prod from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Prod from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$e$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$\mu$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ $t\bar{t}V$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$e$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$\mu$ from the full fit to data.
Post-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}W$ from the full fit to data.
Post-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}Z$ from the full fit to data.
Observed and expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hu)$ for different analyses and their statistical combination.
Observed and expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hc)$ for different analyses and their statistical combination.
Post-fit normalisation factors of free-floating background processes and the signal normalisation.
Post-fit predicted and observed yields in all $2\ell$SS signal and control regions. Pre-fit signal contributions for a signal cross section equivalent to $\mathcal{B}(t\to Hq)=0.1\,\%$ are given as well.
Post-fit predicted and observed yields in all $3\ell$ signal and control regions. Pre-fit signal contributions for a signal cross section equivalent to $\mathcal{B}(t\to Hq)=0.1\,\%$ are given as well.
Expected upper limits on $\mathcal{B}(t\to Hq)$ for the nominal fit and alternative fit configurations. One contains the full phase space but only considers statistical uncertainties. Two other configurations consider the full set of systematic uncertainties, but only encompass one final state.
Expected and observed upper limits on $\mathcal{B}(t\to Hq)$ and $|C_{u\phi}^{qt,tq}|$ for the full fit containing all systematic uncertainties.
Pre-fit plot of $H_\text{T}(\text{jets})$ in the SR$2\ell$ Dec from a signal-blinded background-only fit.
Pre-fit plot of $m(t_\text{SM}, b\text{-jet}_0)$ in the SR$2\ell$ Prod from a signal-blinded background-only fit.
Pre-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Dec from a signal-blinded background-only fit.
Pre-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Prod from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$e$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$\mu$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ $t\bar{t}V$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$e$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$\mu$ from the full fit to data.
Pre-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}W$ from the full fit to data.
Pre-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}Z$ from the full fit to data.
Ranking of fit nuisance parameters according to their impact on the post-fit $tHu$ signal normalisation when fixed to $\pm1\sigma$
Ranking of fit nuisance parameters according to their impact on the post-fit $tHc$ signal normalisation when fixed to $\pm1\sigma$
Expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hu)$ for each individual final state and the full analysis.
Expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hc)$ for each individual final state and the full analysis.
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Definition of the dilepton signal regions.
Definition of the trilepton signal regions.
Definition of the tetralepton signal regions.
Definition of the fiducial volumes at particle- and parton-level. Leptons refer exclusively to electrons and muons - they are dressed with additional radiation at particle-level, but not at parton-level.
Definition of the dilepton $t\bar{t}$ validation regions.
Pre-fit distribution of the number of $b$-jets in 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j1b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-5j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Definition of the tetralepton control region.
Definition of the trilepton fakes control regions.
Pre-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region.
Pre-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region.
Pre-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region.
Post-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region
Post-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region
Post-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region
Post-fit distribution of NN output in SR-2L-5j2b region.
Post-fit distribution of NN output in SR-2L-6j1b region.
Post-fit distribution of NN output in SR-2L-6j2b region.
Post-fit distribution of DNN-$t\bar{t}Z$ output in 3L-SR-ttZ region.
Post-fit distribution of DNN-$t\bar{t}Z$ outputt in 3L-SR-tZq region.
Post fit events yields in 3L-SR-WZ region.
Post-fit distribution of NN output in 4L-SR-SF region.
Post-fit distribution of NN output in 4L-SR-DF region.
Post-fit distribution of b-tagger output for leading b-jet in 4L-CR-ZZ region.
Measured values of the background normalizations obtained from the combined fit. The uncertainties include statistical and systematic sources.
Measured $\sigma_{t\bar{t}\text{Z}}$ cross sections obtained from the fits in the different lepton channels. The uncertainties include statistical and systematic sources.
Grouped impact of systematic uncertainties in the combined inclusive fit to data.
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 top-left).
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 top-right).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 bottom-left).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 bottom-right).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 top-left and Figure 11 top-left).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 top-right).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 bottom-left).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 bottom-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 top-left and Figure 11 top-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 top-right).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 bottom-left).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19 top-left and Figure 11 bottom-left).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, top-right).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19, bottom-left).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20 top-left and Figure 11 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, top-right).
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20, bottom-left)
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, bottom-right)
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21 top-left and Figure 12 top-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21, bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22 top-left and Figure 12 bottom-left).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23 top-left and Figure 12 bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, bottom-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24 top-left and Figure 12 top-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, top-right).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24, bottom-left).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, bottom-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 top-left and Figure 9 top-left).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 top-left and Figure 10 bottom-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 top-left and Figure 10 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 top-right).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 bottom-left).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 bottom-right).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 top-left and Figure 10 top-left).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 top-right).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 bottom-left).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 left and Figure 9 bottom-left).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 top-left and Figure 9 top-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 top-left and Figure 10 top-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 left and Figure 9 bottom-right).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 right).
Bootstrap replicas (0-499) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Parton-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Particle-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region CR-4L-ZZ.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at parton-level.
Ranking of nuisance parameters and background normalizations on signal strength for inclusive cross section measurement in combination of all channels
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for Fisher-rotated directions of EFT sensitivity, in the marginalised linear fit.
Correlation matrix of the input particle-level observables used in the EFT fit.
The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.
D(pt) distributions for pp and Pb+Pb collisions, jet rapidity 1.2 < |y| < 2.1.
D(z) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 2.1.
D(z) distributions for pp and Pb+Pb collisions, jet rapidity |y| < 0.3.
D(z) distributions for pp and Pb+Pb collisions, jet rapidity 0.3 < |y| < 0.8.
D(z) distributions for pp and Pb+Pb collisions, jet rapidity 1.2 < |y| < 2.1.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 0.3, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with 0.3 < |y| < 0.8, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with 1.2 < |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(pt) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(pt) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 100 < pt < 126 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 126 < pt < 158 GeV.
Ratio of D(z) distributions collisions, centrality 0-10 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 20-30 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 30-40 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
Ratio of D(z) distributions collisions, centrality 60-80 PCT for jets with |y| < 2.1, 158 < pt < 398 GeV.
The difference between the total yield of particles with 1 < pt^trk < 4 GeV measured in 0-80 PCT Pb+Pb collisions and the total yield measured in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The difference between the total yield of particles with 4 < pt^trk < 25 GeV measured in 0-80 PCT Pb+Pb collisions and the total yield measured in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The difference between the total yield of particles with 25 < pt^trk < 100 GeV measured in 0-80 PCT Pb+Pb collisions and the total yield measured in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The difference between the total transverse momentum of particles with 1 < pt^trk < 4 GeV measured in 0-80 PCT Pb+Pb collisions and the total transverse momentum of particles in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The difference between the total transverse momentum of particles with 4 < pt^trk < 25 GeV measured in 0-80 PCT Pb+Pb collisions and the total transverse momentum of particles in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The difference between the total transverse momentum of particles with 25 < pt^trk < 100 GeV measured in 0-80 PCT Pb+Pb collisions and the total transverse momentum of particles in the same pt interval measured in pp collisions in jets with |y| < 2.1, 100 < pt < 398 GeV.
The ratio of R_D(z) distributions in three rapidity selections for 0-10 PCT Pb+Pb collisions.
The ratio of R_D(z) distributions in three rapidity selections for 10-20 PCT Pb+Pb collisions.
The ratio of R_D(z) distributions in three rapidity selections for 20-30 PCT Pb+Pb collisions.
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 10-20%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 20-40%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 40-80%.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range > 0 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range 0 to 10 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range 10 to 30 GeV/c. The systematic error includes the uncertainty in Ncoll.
Combined results for the centrality (Npart) dependence of Z boson yields divided by Ncoll for the PT range > 30 GeV/c. The systematic error includes the uncertainty in Ncoll.
Measurements of charged-particle fragmentation functions of jets produced in ultra-relativistic nuclear collisions can provide insight into the modification of parton showers in the hot, dense medium created in the collisions. ATLAS has measured jets in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC using a data set recorded in 2011 with an integrated luminosity of 0.14 nb$^{-1}$. Jets were reconstructed using the anti-$k_{t}$ algorithm with distance parameter values $R$ = 0.2, 0.3, and 0.4. Distributions of charged-particle transverse momentum and longitudinal momentum fraction are reported for seven bins in collision centrality for $R=0.4$ jets with $p_{{T}}^{\mathrm{jet}}> 100$ GeV. Commensurate minimum $p_{\mathrm{T}}$ values are used for the other radii. Ratios of fragment distributions in each centrality bin to those measured in the most peripheral bin are presented. These ratios show a reduction of fragment yield in central collisions relative to peripheral collisions at intermediate $z$ values, $0.04 \lesssim z \lesssim 0.2$ and an enhancement in fragment yield for $z \lesssim 0.04$. A smaller, less significant enhancement is observed at large $z$ and large $p_{\mathrm{T}}$ in central collisions.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.3 jets. The errors represent combined statistical and systematic uncertainties.
Differences of D(Z) distributions in different centralities with respect to peripheral events for R = 0.2 jets. The errors represent combined statistical and systematic uncertainties.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.4 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.3 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(z) distribution for R=0.2 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.4 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.3 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
D(pt) distribution for R=0.2 jets.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(z) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.4 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.3 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
Ratio of D(pt) distributions for R=0.2 jets for central to peripheral events.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.