Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.
Differential cross section DSIG/DQ**2 in bins of Q**2 .
Differential cross section DSIG/DX in bins of X .
Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.
Single differential forward jet cross section as a function of Bjorken X.
Triple differential cross section.
Triple differential cross section.
Dijet production in deep inelastic ep scattering is investigated in the region of low values of the Bjorken-variable x (10^-4 < x < 10^-2) and low photon virtualities Q^2 (5 < Q^2 < 100 GeV^2). The measured dijet cross sections are compared with perturbative QCD calculations in next-to-leading order. For most dijet variables studied, these calculations can provide a reasonable description of the data over the full phase space region covered, including the region of very low x. However, large discrepancies are observed for events with small separation in azimuth between the two highest transverse momentum jets. This region of phase space is described better by predictions based on the CCFM evolution equation, which incorporates k_t factorized unintegrated parton distributions. A reasonable description is also obtained using the Color Dipole Model or models incorporating virtual photon structure.
Inclusive dijet cross section for a lower ET cut off of (5+0) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+1) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+2) GeV for the highest ET jet.