Inclusive dimuon production by 39.5 GeV/ c π ± , K ± , p and p¯ is described for masses greater than 2.0 GeV/ c 2 . The π − , π + and (π − − π + ) continuum cross-sections exceed the naive Drell-Yan predictions by a factor ∼2.4. The pion valence structure function has been measured and is consistent with a corresponding measurement at 200 GeV/ c .
No description provided.
Prompt dimuon production has been measured. Events with mass up to 25 GeV/c2 are observed, as well as the J and ϒ resonances. Cross sections are given for J and ϒ production. For the continuum, the scaling function F(τ) is measured at very small values of τ=ms covering the range 0.05<τ<0.20.
No description provided.
HERE UPSILON = ALL USILON FAMILY. ANGULAR DISTBN. IS SEEN TO BE ISOTROPIC.
No description provided.
None
No description provided.
No description provided.
PRESENTED IN PREPRINT ON FIG 3.
This paper presents production and decay characteristics of 500 high-mass, high-resolution μ+μ− pairs produced in π− Be collisions at 150 and 175 GeV/c. The data do not agree with a simple Drell-Yan production mechanism, but indicate that higher-order quantum-chromodynamic corrections must be included.
No description provided.
No description provided.
Experimental results on the investigation of inclusive production of muon pairs and vector mesons (J/ ψ , ϱ 0 ( ω )) in π − N collisions at 27 and 40 GeV/ c momenta are presented.
No description provided.
We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
CROSS SECTIONS ARE PER COPPER NUCLEUS.