Showing 2 of 2 results
Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.
Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix for the absolute cross-section as function of the hadronic top-quark top quark pT, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix for the relative cross-section as function of the hadronic top-quark top quark pT, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix for the absolute cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix for the relative cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix of the absolute cross-section as function of the mass of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the mass of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the tt̄ system pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the tt̄ system pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the top quark transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the top quark transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the top quark rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the top quark rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the tt̄ system transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the tt̄ system transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the mass of the tt̄ system in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the mass of the tt̄ system in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the top quark transverse momentum in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the top quark transverse momentum in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the top quark rapidity in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the top quark rapidity in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and |$p_{out}^{t\bar{t}}$| (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and |$p_{out}^{t\bar{t}}$| (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.