Large-angle cross sections for γd→π0d are systematically measured in the photon energy range between 500 and 1000 MeV. A good fit is obtained by use of a Glauber-model calculation which includes the dibaryon resonances F33(2.26) and G41(2.51), but the fit has an unusual nature in the role of resonance and nonresonance contributions.
Liquid hydrogen target for final calibration.
Data are presented for the reaction ep → ep π 0 at a nominal momentum transfer squared of 1.0 (GeV/ c ) 2 . The data were obtained using an extracted electron beam from NINA and two magnetic spectrometers for coincidence detection of the electron and proton. Differential cross sections have been measured for isobar masses in the range 1.19–1.73 GeV/ c 2 .
No description provided.
No description provided.
No description provided.
The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances
Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.
Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.
Differential cross sections at Q**2=6.212 GeV**2, EPSILON=0.4411, W=1.312 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.
Angular distributions of the target symmetry for the reaction γ + p → π 0 + p have been measured at the Bonn 2.5 GeV Electron Synchrotron at pion c.m. angles between 13° and 63° and photon energies of 1.0 and 1.1 GeV. The π 0 mesons were detected by their two decay photons with total absorption lead-glass Čerenkov counters. Butanol was used as target material in a continuous flow 3 He cryostat operating at 0.5 K and 25 kG. The π 0 counting rate from free protons in the butanol target was derived from the measurements of the differential cross section on hydrogen. The data are compared with data of other laboratories and the results of two recent partial-wave analyses.
No description provided.
None
No description provided.
The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.
Total cross section for the background reaction GAMMA P --> P PI0.
Total cross section for the background reaction GAMMA P --> P PI0 PI0.
Differential cross section as a function of the emitted photon energy for the reaction GAMMA P --> P PI0 GAMMA at beam energy 450 MeV.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.