Reaction K−p→π0π0Λ was measured at eight incident K− momenta between 514 and 750MeV∕c using the Crystal Ball multiphoton spectrometer. The reaction dynamics are displayed in total cross sections, Dalitz plots, invariant-mass spectra, production angular distributions, and the Λ polarization. The π0π0Λ production is dominated by the π0Σ0(1385) intermediate state; no trace of other light Σ∗ states is observed, and the role of the f0(600) meson appears to be insignificant. A striking similarity is seen between K−p→π0π0Λ and π−p→π0π0n; this can be understood as a consequence of dynamical flavor symmetry.
Measured cross section. Statistical errors only.
Differential cross section for the di-pion system in the c.m. system for incident momenta 514 to 629 MeV.
Differential cross section for the di-pion system in the c.m. system for incident momenta 659 to 750 MeV.
The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 0.9 to 1.0 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.0 to 1.2 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.2 to 1.4 GeV.
The angular distributions of the cross section, the proton analyzing power, and all proton polarization transfer coefficients of p→d elastic scattering were measured at 250 MeV. The range of center-of-mass angles was 10°–165° for the cross section and the analyzing power, and about 10°–95° for the polarization transfer coefficients. These are the first measurements of a complete set of proton polarization observables for p→d elastic scattering at intermediate energies. The present data are compared with theoretical predictions based on exact solutions of the three-nucleon Faddeev equations and modern realistic nucleon-nucleon potentials combined with three-nucleon forces (3NF), namely, the Tucson-Melbourne (TM) 2π-exchange model, a modification thereof (TM′) closer to chiral symmetry, and the Urbana IX model. Large effects of the three-nucleon forces are predicted. The inclusion of the three-nucleon forces gives a good description of the cross section at angles below the minimum. However, appreciable discrepancies between the data and predictions remain at backward angles. For the spin observables the predictions of the TM 3NF model deviate strongly from the other two 3NF models, which are close together, except for Kyy′. In the case of the analyzing power all 3NF models fail to describe the data at the upper half of the angular range. In the restricted measured angular range the polarization transfer coefficients are fairly well described by the TM′ and Urbana IX 3NF models, whereas the TM 3NF model mostly fails. The transfer coefficient Kyy′ is best described by the Urbana IX but the theoretical description is still insufficient to reproduce the experimental data. These results call for a better understanding of the spin structure of the three-nucleon force and very likely for a full relativistic treatment of the three-nucleon continuum.
Cross section and analyzing power measurements.
Proton polarization transfer coefficients.
Measurements of the eta meson production with a polarised proton beam in the reaction p(pol) p --> p p eta have been carried out at an excess energy of Q = 40 MeV. The dependence of the analysing power A_y on the polar angle theta^*_q of the eta meson in the center of mass system (CMS) has been studied. The data indicate the possibility of an influence of p- and d-waves to the close to threshold eta production.
Averaged value of the analyzing power and cross section as a function of the emmission angle of the ETA meson is the CM system.
Precise measurements of deuteron vector and tensor analyzing powers Ayd, Axx, Ayy, and Axz in d−p elastic scattering were performed via 1H(d→,d)p and 1H(d→,p)d reactions at three incoming deuteron energies of Edlab=140, 200, and 270 MeV. A wide range of center-of-mass angles from ≈10° to 180° was covered. The cross section was measured at 140 and 270 MeV at the same angles. These high precision data were compared with theoretical predictions based on exact solutions of three-nucleon Faddeev equations and modern nucleon-nucleon potentials combined with three-nucleon forces. Three-body interactions representing a wide range of present day models have been used: the Tucson-Melbourne 2π-exchange model, a modification thereof closer to chiral symmetry, the Urbana IX model, and a phenomenological spin-orbit ansatz. Large three-nucleon force effects are predicted, especially at the two higher energies. However, only some of them, predominantly dσ/dΩ and Ayd, are supported by the present data. For tensor analyzing powers the predicted effects are in drastic conflict to the data, indicating defects of the present day three-nucleon force models.
Angular distribution for DEUT P elastic scattering at EKIN of 140 MeV with the SMART spectrograph.
Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the D-room polarimeter.
Angular distribution for DEUT P elastic scattering at EKIN of 270 MeV with the SMART spectrograph.
We present measurements of the differential and total cross sections and the Λ polarization for the reaction K−p→ηΛ from threshold to pK−=770MeV/c, with much better precision than previous measurements. Our cross-section data show a remarkable similarity to the SU(3) flavor-related π−p→ηn cross-section results. The reaction K−p→ηΛ at threshold is dominated by formation of the intermediate Λ(1670)12− state.
Total cross section measurement for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
Differential cross sections DSIG/DOMEGA for K- P --> ETA LAMBDA. Errors shown are statistical only.
We present zero-degree differential cross sections and transverse spin-transfer coefficients DNN(0°) for the 17,18O(p→,n→)17,18F reactions at Ep=118 MeV. For the transition to the 17F(g.s.) to which several multipoles contribute, the measured DNN(0°)=−0.13±0.05 is used to separate the Fermi and Gamow-Teller contributions at 0°. The empirical Gamow-Teller strengths and the Fermi strengths are employed to estimate the solar neutrino absorption cross section in 17O and 18O.
No description provided.
No description provided.
The reaction γp → K 0 Σ + has been measured with the SAPHIR detector at the electron stretcher ring ELSA. The total cross section rises up to a peak value of 1.1 μ b at a photon energy of 1.4 GeV. The differential cross sections dσ/dΩ are consistent with being flat throughout the measured energy range. The first measurement of the Σ + polarization in photon induced reactions was obtained.
Total cross section for the reaction GAMMA P --> K0 SIGMA+. Errors include statistics and the uncertainty on the acceptance calculation and photon flux.
Differential cross section for the reaction GAMMA P --> K0 SIGMA+. Errors are dominated by statistical uncertainties.
Measure of SIGMA+ polarization in the reaction GAMMA P --> K0 SIGMA+.
Inclusive measurements of the pion differential cross sections and analyzing powers have been carried out for the pp→pnπ+ reaction at 420 and 500 MeV using the SASP spectrometer at TRIUMF. Pion energies from the onset of the continuum down to about 25 MeV were covered in the angular range from 23° to 100° (lab). Total cross sections of 0.750±0.075 mb and 2.77±0.28 mb were determined for the pp→pnπ+ reaction at 420 and 500 MeV, respectively. The experimental results are presented and discussed within the framework of a partial wave analysis. Theoretical predictions from a covariant one-boson-exchange model that includes final state interactions, provide a good description of the data. The pion spectra, in the region corresponding to low relative np energies, are also well described by a final state interaction model that uses the pp→dπ+ cross sections as input. Details of the determination of the background corrections and detector efficiencies will be discussed.
No description provided.
Only statistical errors are given.
Only statistical errors are given.
Associated strangeness production in the reactions γp → K + Λ and γp → K + Σ 0 was measured with the SAPHIR detector at the electron stretcher ring ELSA at Bonn. Data on total and differential cross sections and on hyperon polarizations are presented. The total cross section for Λ production shows a strong threshold enhancement whereas the Σ 0 data have a maximum at about E γ =1.45 GeV. Along with the angular decomposition of the differential cross section into polynomials, this suggests resonance production. However, the angular distributions of both hyperon polarizations vary only slightly with the photon energy. Λ and Σ 0 polarizations show opposite signs and change sign over the angular range.
Total cross section for the reaction GAMMA P --> K+ LAMBDA.
Total cross section for the reaction GAMMA P --> K+ SIGMA0.
Differential cross section for the reaction GAMMA P --> K+ LAMBDA in the GAMMA energy range 0.90 to 1.10 GeV in three energy bins.