An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.
No description provided.
No description provided.
No description provided.
Differential cross sections for p̄p elastic scattering have been measured in the full angular range for the p̄ momenta between 180 and 600 MeV/ c . It is found that s- and p-wave scattering is dominant below 300 MeV/ c . The s-wave component in the total cross section is 40–60% below 300 MeV/ c , in contrast to the NN scattering where it is about 90%. The s-, p- and d-wave scattering amplitudes are derived.
No description provided.
No description provided.
No description provided.
The production and decay of τ-pairs was studied with the JADE detector at PETRA at center-of-mass energies of 30 ⩽√ s ⩽ 46.78 GeV. The total production cross section for τ-pairs agreed with QED predictions to order α 3 . Lower limits on QED cut-off parameters of Λ + > 285 GeV and Λ − > 210 GeV at 95% confidence level were ontained. The decay branching fractions into one and three charged particles were determined to be (86.1 ± 0.5 ± 0.9)% and (13.6±0.5 ±0.80)%. In the angular distributions a forward-backward asymmetry was observed, from which the axial-vector weak charge to the τ was determined to be a τ = −0.74 ± 0.22 in agreement with the standard model. An analysis of the process e + e − → τ + τ − γ showed agreement with QED calculations to O(α 3 ).
Includes data from earlier analysis at lower energy - M. Nozaki - Tokyo - UTLICEPP-82-02.
Angular distributions - data requested from authors.
Forward-backward asymmetry determined from fit to angular distribution of form N*(1 + cos(theta)**2 + (3/8)*A*cos(theta)).
The real-to-imaginary ratio of the p p forward elastic scattering amplitude has been measured at the LEAR facility of CERN by the Coulomb-nuclear interference method at seven beam momenta between 181 and 590 MeV/ c . The ratio is positive at 590 MeV/ c , becomes negative below 500 MeV/ c , reaches a minimum at 260 MeV/ c and then crosses zero again at about 230 MeV/ c .
No description provided.
No description provided.
No description provided.
We have studied 419 τ pair events produced in the reactione+e−→τ+ τ− at a c.m. energy of 34.6 GeV. We measure the cross section and angular distribution, as well as the decay branching ratios. The production characteristics are consistent with the Standard Electroweak Model predictions of γ andZ0 interference. The branching ratios are generally consistent with the τ decaying according to standard weak interaction principles, but we observe somewhat more decays resulting in single charged hadrons plus neutrals than are predicted by present theory.
Corrected for radiative effects.
Measured cross section relative to Standard Model Prediction.
Asymmetry based on fits to angular distribution.
A precise measurement of the differential cross section at zero degrees for the pion charge-exchange reaction π−p→π0n at pπ=522 MeV/c has been made. The result is dσdΩ (0∘)=4.32±0.11 mb/sr.
DIFFERENTIAL CROSS SECTION AT THETA = 0.
The antineutron angular distribution in the reaction p¯C→n¯X was measured at 590 MeV/c. The shape of the distribution is found to be similar to that of the elementary process p¯p→n¯n, which indicates that the quasi-free process is the dominant mechanism for p¯C→n¯X. The antineutron production cross section per bound proton in the carbon nucleus is 0.14 times that for a free proton.
No description provided.
No description provided.
Differential cross sections for the process pi +d to pp at seven energies in the region Tpi =280-450 MeV and in the angular range theta * approximately=4-90 degrees have been measured on the LNPI synchrocyclotron. The results include 94 new data points. The measurements have been carried out using a ten-channel hodoscope set-up. Statistical errors are between 2.5% and 7.8% depending on the scattering angle and Tpi . The data obtained indicate that there is an essential contribution from the partial wave with orbital angular momentum l=3 over the whole energy range considered. The authors also observe a noticeable contribution from the l=4 partial wave to the differential cross sections of the pi +d to pp reaction from Tpi >or=357 MeV. The total cross sections for the process pi +d to pp are also presented.
No description provided.
No description provided.
No description provided.
Measurements of the differential cross section for π − d elastic scattering in the backward angular region (−1 ⩽ cos θ cms ⩽ −0.98) are presented. These measurements were made at nine incident pion momenta P π ranging from 1.75 to 3.09 GeV/ c and at the largest values of q 2 [up to 7 (GeV/ c ) 2 ] ever reached experimentally; here q 2 is the momentum transfer squared. The differential cross section was found to decrease rapidly with increasing momentum d σ d Ω cms (180°) ∼ P −15.7 π , d σ d t ∼ (q 2 ) −12.8 . The data are compared with predictions of Regge and quark bag models.
Statistical errors only.
The differential cross section and analyzing power of the reaction pp → d π + were measured for nine incident proton energies between 725 and 1000 MeV. A magnetic spectrometer was used to detect either deuterons or pions. Cross-section and analyzing-power angular distributions were respectively fitted with Legendre polynomial and associated Legendre function expansions, the coefficients of which were found to vary smoothly with energy in the vicinity of the alleged 3 F 3 dibaryon resonance.
Data present here in form of Legendre polynomial fit.
Legendre Polynomial fit to cross section.
Legendre polynomial fit to analysing power.