Date

Cross-section and heavy quark composition of gamma + muon events produced in p anti-p collisions

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 012003, 2002.
Inspire Record 557647 DOI 10.17182/hepdata.42881

We present a measurement of the cross section and the first measurement of the heavy flavor content of associated direct photon + muon events produced in hadronic collisions. These measurements come from a sample of 1.8 TeV ppbar collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily due to Compton scattering process charm+gluon -> charm+photon, with the final state charm quark producing a muon. The cross section for events with a photon transverse momentum between 12 and 40 GeV/c is measured to be 46.8+-6.3+-7.5 pb, which is two standard deviations below the most recent theoretical prediction. A significant fraction of the events in the sample contain a final-state bottom quark. The ratio of charm to bottom production is measured to be 2.4+-1.2, in good agreement with QCD models.

2 data tables

The measured photon-muon cross section.

Measured cross section in the PT interval 12-40 GeV.


Diffractive jet production in deep inelastic e+ p collisions at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 20 (2001) 29-49, 2001.
Inspire Record 539087 DOI 10.17182/hepdata.46939

A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.

24 data tables

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Q**2.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average transverse momentum of the two jets in the c.m.frame.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average pseudorapidity of the two jets in the lab frame.

More…

Measurement of open beauty production in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 18 (2001) 625-637, 2001.
Inspire Record 537299 DOI 10.17182/hepdata.46847

The production and semi-leptonic decay of heavy quarks have been studied in the photoproduction process $e^+p -> e^+ + {dijet} + e^- + X with the ZEUS detector at HERA using an integrated luminosity of 38.5 ${\rm pb^{-1}}$. Events with photon-proton centre-of-mass energies, $W_{\gamma p}$, between 134 and 269 GeV and a photon virtuality, Q^2, less than 1 ${\rm GeV^2}$ were selected requiring at least two jets of transverse energy $E_T^{\rm jet1(2)} >7(6)$ GeV and an electron in the final state. The electrons were identified by employing the ionisation energy loss measurement. The contribution of beauty quarks was determined using the transverse momentum of the electron relative to the axis of the closest jet, $p_T^{\rm rel}$. The data, after background subtraction, were fit with a Monte Carlo simulation including beauty and charm decays. The measured beauty cross section was extrapolated to the parton level with the b quark restricted to the region of transverse momentum $p_T^{b} > p_T^{\rm min} =$ 5 GeV and pseudorapidity $|\eta^{b}| <$ 2. The extrapolated cross section is $1.6 \pm 0.4 (stat.)^{+0.3}_{-0.5} (syst.) ^{+0.2}_{-0.4} (ext.) {nb}$. The result is compared to a perturbative QCD calculation performed to next-to-leading order.

4 data tables

The differential distribution of PT(C=REL) for heavy quark decays. The second DSYS error is due to the energy scale uncertainty.

The differential distribution of X(C=GAMMA,OBS), the fraction of the photons momentum contributing to the production of the two highest transverse energy jets. The second DSYS error is due to the energy scale uncertainty.

Cross section for beauty production with a prompt electron in the restricted kinetic region.

More…

Differential cross-section for W boson production as a function of transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abdesselam, A. ; Abolins, M. ; et al.
Phys.Lett.B 513 (2001) 292-300, 2001.
Inspire Record 535017 DOI 10.17182/hepdata.42950

We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.

1 data table

Measurement of the PT distribution of W boson production for the W --> e nuchannel. The nominal PT is where the predicted function equals its mean value o ver the bin.


Comparison of deep inelastic electron photon scattering data with the HERWIG and PHOJET Monte Carlo models.

The ALEPH & L3 & OPAL & LEP Working Group collaborations Achard, P. ; Andreev, V. ; Braccini, S. ; et al.
Eur.Phys.J.C 23 (2002) 201-223, 2002.
Inspire Record 535230 DOI 10.17182/hepdata.49877

Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.

11 data tables

The individual differential cross sections (DSIG/DW) in the low Q**2 regions for the three experiments.. The data are corrected using the HERWIG-kt model.

The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the HERWIG-kt model.

The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the PHOJET model.

More…

Measurement of inclusive D/s+- photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 481 (2000) 213-227, 2000.
Inspire Record 524912 DOI 10.17182/hepdata.47017

The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.

3 data tables

The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.

The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.

The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.


Inclusive production of D*+- mesons in photon photon collisions at s**(1/2)(ee) = 183-GeV and 189-GeV and a first measurement of F2(c)(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 579-596, 2000.
Inspire Record 510531 DOI 10.17182/hepdata.35045

The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2

7 data tables

Differential PT distribution for anti-tagged events for both D* decay modesand combined.

Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.

Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.

More…

The Transverse momentum and total cross-section of e+ e- pairs in the Z-boson region from p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H ; Akopian, A. ; et al.
Phys.Rev.Lett. 84 (2000) 845-850, 2000.
Inspire Record 505738 DOI 10.17182/hepdata.42070

The transverse momentum and total cross section of e^+e^- pairs in the Z-boson region of 66

2 data tables

The measured transverse momentum distribution of e+e- pairs in the Z0 bosonregion. PT is the centre of the bins.

The total cross section for e+e- pair production in the Z0 region. The mainerror is the statistical and efficiency error, the first DSYS error is the syst ematic error from the background subtractions and the second DSYS error is from the collision luminosity.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1

22 data tables

The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.

The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

More…

Measurement of inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 467 (1999) 137-146, 1999.
Inspire Record 505281 DOI 10.17182/hepdata.28070

Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.

3 data tables

The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.

The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.

Integrated cross section in the visible kinematic region.