Dijet production in diffractive deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 52 (2007) 813-832, 2007.
Inspire Record 757973 DOI 10.17182/hepdata.45428

The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of $61 \pbi$. The dijet cross section has been measured for virtualities of the exchanged virtual photon, $5 < Q^2 < 100 \gev^2$, and $\gamma^{*} p$ centre-of-mass energies, 100 < W < 250 GeV. The jets, identified using the inclusive k_{T} algorithm in the $\gamma^* p$ frame, were required to have a transverse energy $E^*_{T, \rm jet} > 4 \gev$ and the jet with the highest transverse energy was required to have $E^*_{T,\rm jet} > 5 \gev$. All jets were required to be in the pseudorapidity range $-3.5 < \eta^*_{\rm jet} < 0$. The differential cross sections are compared to leading-order predictions and next-to-leading-order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data.

17 data tables

Total di-jet cross section SIG as a function of Q**2 .

Distribution of D(SIG)/DQ**2 as a function of Q**2 .

Distribution of D(SIG)/DW as a function of W .

More…

Diffractive Photoproduction of D*+/-(2010) at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 301-315, 2007.
Inspire Record 747652 DOI 10.17182/hepdata.45627

Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.

12 data tables

Total cross section integrated over the given kinematic range.

Ratio of diffractive to inclusive D* cross section.

Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).

More…

Measurement of inelastic J/psi production in deep inelastic scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 44 (2005) 13-25, 2005.
Inspire Record 682022 DOI 10.17182/hepdata.46122

The inelastic production of J/psi mesons in e p collisions has been studied with the ZEUS detector at HERA using an integrated luminosity of 109 pb-1. The J/psi mesons were identified using the decay channel J/psi -> mu+ mu-. The measurements were performed in the kinematic range 2 < Q^2< 80 Gev^2, 50 < W < 250 Gev, 0.2 < z <0.9 and -1.6 < Ylab < 1.3, where Q^2 is the virtuality of the exchanged photon, W is the photon-proton centre-of-mass energy, z is the fraction of the photon energy carried by the J/psi meson in the proton rest frame and Ylab is the rapidity of the J/psi in the laboratory frame. The measured cross sections are compared to theoretical predictions within the non-relativistic QCD framework including colour-singlet and colour-octet contributions, as well as to predictions based on the kT-factorisation approach. Calculations of the colour-singlet process generally agree with the data, whereas inclusion of colour-octet terms spoils this agreement.

11 data tables

Integrated cross section for the process E P --> E J/PSI X.

Differential cross section as a function of Z.

Differential cross section as a function of W.

More…

Photoproduction of D*+- mesons associated with a leading neutron.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 590 (2004) 143-160, 2004.
Inspire Record 642709 DOI 10.17182/hepdata.46281

The photoproduction of $D^{*\pm} (2010)$ mesons associated with a leading neutron has been observed with the ZEUS detector in $ep$ collisions at HERA using an integrated luminosity of 80 pb$^{-1}$. The neutron carries a large fraction, {$x_L>0.2$}, of the incoming proton beam energy and is detected at very small production angles, {$\theta_n<0.8$ mrad}, an indication of peripheral scattering. The $D^*$ meson is centrally produced with pseudorapidity {$|\eta|<1.5$}, and has a transverse momentum {$p_{\it T} > 1.9$ GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive $D^*$ production is $8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\%$ in the photon-proton center-of-mass energy range {$130 <W<280$ GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.

8 data tables

Integrated cross section. The first DSYS error includes the uncertainty in the luminosity and the second DSYS error is due to the knowledge of the branching ratios.

No description provided.

No description provided.

More…

Measurement of the open-charm contribution to the diffractive proton structure function.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 672 (2003) 3-35, 2003.
Inspire Record 624128 DOI 10.17182/hepdata.43831

Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta < 0.8, p_T(D*+/-) > 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

18 data tables

Total cross section for diffractive D*+- production in the stated kinematicregion.. The second DSYS uncertainty arises from the subtraction of the proton-dissociative background.

The differential cross section as a function of X(NAME=POMERON).

The differential cross section as a function of transverse momentum.

More…

Study of hadronic final states from double tagged gamma gamma events at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
CERN-EP-2003-025, 2003.
Inspire Record 619958 DOI 10.17182/hepdata.49702

The interaction of virtual photons is investigated using double tagged gammagamma events with hadronic final states recorded by the ALEPH experiment at e^+e^- centre-of-mass energies between 188 and 209 GeV. The measured cross section is compared to Monte Carlo models, and to next-to-leading-order QCD and BFKL calculations.

10 data tables

Differential cross section as a function of the relative energy of the scattered electrons.

Differential cross section as a function of the polar angle THETA of the scattered electrons.

Differential cross section as a function of the virtuality Q**2 of the photons.

More…

Measurement of the cross-section for the process gamma gamma --> p anti-p at s(ee)**(1/2) = 183-GeV - 189-GeV at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 28 (2003) 45-54, 2003.
Inspire Record 595836 DOI 10.17182/hepdata.48881

The exclusive production of proton-antiproton pairs in the collisions of two quasi-real photons had been studied using data taken at sqrt(s)_ee=183 GeV and 189 GeV with the OPAL detector at LEP. Results are presented for Ppbar invariant masses, W, in the range 2.15 W< <3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model.

3 data tables

Cross section as a function of the invariant mass of the pbar-p pair.

Cross section for two photon production of the pbar-p pair.

Angular distributions in 3 W ranges.


Measurement of diffractive production of D*(2010)+- mesons in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 545 (2002) 244-260, 2002.
Inspire Record 588104 DOI 10.17182/hepdata.46583

Diffractive production of D*+-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+-(2010) meson is reconstructed in the decay channel D*+ -> (D0 -> K-pi+) pi+ (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

9 data tables

Measurment of total diffractive cross section and ratio to inclusive DIS cross section.

Ratio of diffractive to inclusive D*+- production w.r.t. Q**2.

Ratio of diffractive to inclusive D*+- production w.r.t. W.

More…

Double tag events in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 531 (2002) 39-51, 2002.
Inspire Record 565440 DOI 10.17182/hepdata.49820

Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality &lt;Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 &lt;= Y &lt;= 5. An excess is observed in the interval 5 &lt; Y &lt;= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

6 data tables

Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.

Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.

Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.

More…

Measurement of the hadronic cross-section for the scattering of two virtual photons at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 24 (2002) 17-31, 2002.
Inspire Record 563730 DOI 10.17182/hepdata.48895

The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.

11 data tables

Total cross section in the given phase space and assuming ALPHA = 1/137.

Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.

Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.

More…