Measurement of the pp to ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 740 (2015) 250-272, 2015.
Inspire Record 1298807 DOI 10.17182/hepdata.67317

A measurement of inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV are presented. A data sample, corresponding to an integrated luminosity of 19.6 inverse femtobarns was collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ to lll'l', where l = e, mu and l' = e, mu, tau. The measured total cross section, sigma(pp to ZZ) = 7.7 +/- 0.5 (stat.) +0.5-0.4 (syst.) +/- 0.4 (theo.) +/- 0.2 (lum.) pb for both Z bosons produced in the mass range 60 < m[Z] < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f[4,Z] < 0.004, -0.004 < f[5,Z] < 0.004, -0.005 < f[4,gamma] < 0.005, and -0.005 < f[5,gamma] < 0.005.

7 data tables

The total ZZ production cross section (P P --> Z0 Z0 X, 60GeV < mll < 120GeV) as measured in each decay channel and for the combination of all channels. The first systematic uncertainty is detector systematics, second is theoretical systematics and the third is luminosity systematic uncertainty.

Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the highest pT lepton in the event.

Differential cross sections normalized to the fiducial cross section for the combined 4e, 4mu and 2e2mu decay channels as a function of pT for the Z1, where Z1 is defined as highest pT Z candidate.

More…

Diffractive Dijet Photoproduction in ep Collisions at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 70 (2010) 15-37, 2010.
Inspire Record 857109 DOI 10.17182/hepdata.61487

Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.

18 data tables

Total diffractive dijet positron-proton cross section integrated over the full measured kinematic range.

Bin averaged hadron level differential cross section for diffractive dijet production as a function of X(C=GAMMA). The first systematic error is the uncorrelated and the second the correlated uncertainty.

Bin averaged hadron level differential cross section for diffractive dijet production as a function of the ET of jet 1. The first systematic error is the uncorrelated and the second the correlated uncertainty.

More…

Inelastic Production of J/psi Mesons in Photoproduction and Deep Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 68 (2010) 401-420, 2010.
Inspire Record 844299 DOI 10.17182/hepdata.60488

A measurement is presented of inelastic photo- and electroproduction of J/psi mesons in ep scattering at HERA. The data were recorded with the H1 detector in the period from 2004 to 2007. Single and double differential cross sections are determined and the helicity distributions of the J/psi mesons are analysed. The results are compared to theoretical predictions in the colour singlet model and in the framework of non-relativistic QCD. Calculations in the colour singlet model using a k_T factorisation ansatz are able to give a good description of the data, while colour singlet model calculations to next-to-leading order in collinear factorisation underestimate the data.

19 data tables

Measured differential photoproduction cross section as a function of the squared transverse momentum of the J/PSI.

Measured differential photoproduction cross section as a function of the elasticity of the J/PSI.

Measured photoproduction cross section as a function of the photon-proton centre of mass energy W.

More…

Measurement of the D* Meson Production Cross Section and F_2^{ccbar}, at High Q^2, in ep Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Phys.Lett.B 686 (2010) 91-100, 2010.
Inspire Record 837434 DOI 10.17182/hepdata.55370

The inclusive production of D*(2010) mesons in deep-inelastic ep scattering is measured in the kinematic region of photon virtuality 100 &lt; Q^2 &lt; 1000 GeV^2 and inelasticity 0.02 &lt; y &lt; 0.7. Single and double differential cross sections for inclusive D* meson production are measured in the visible range defined by |eta(D*)| &lt; 1.5 and p_T(D*) > 1.5 GeV. The data were collected by the H1 experiment during the period from 2004 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. The charm contribution, F_2^{ccbar}, to the proton structure function F_2 is determined. The measurements are compared with QCD predictions.

12 data tables

Total inclusive cross section for D*+- production.

Single differential cross section DSIG/DPT for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.

Single differential cross section DSIG/DETARAP for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.

More…