None
HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (1/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).
HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON). THE DISTRIBUTION (XL/N)*D(N)/D(XL) WAS FITTED BY THE SUM: CONST(1)* EXP(-SLOPE(1)*XL)+CONST(2)*EXP(-SLOPE(2)*XL).
HERE XL IS CUMULATIVE NUMBER, DEFINED AS FOLLOWS: (E-PL)/M(NUCLEON).
We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Corrected Thrust distribution.
Corrected Major distribution.
Corrected Minor distribution.
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
Fully corrected charged particle multiplicity distributions. Errors for n=2 and 4 are systematic only since these were derived using the LUND 6.3 Monte Carlo normalized to the observations at higher n values.
No description provided.
The production of Λ,\(\bar \Lambda\) andKs0 has been studied in 200 GeV/nucleonp+S and S+S collisions in the streamer chamber of the NA35 experiment at the CERN SPS. Significant enhancement of the multiplicities of all observed strange particles relative to negative hadrons was observed in central S+S collisions, as compared top+p andp+S collisions. The latter collisions show no overall (relative) strangeness enhancement overp+p, but the rapidity distributions and hadron multiplicities indicate some secondary cascading production of Λ particles in thep+S andp+Au collisions. The Λ polarization in central S+S collisions was found to be compatible with zero up topT=2 GeV/c.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in SU SU collisions.
We present a study of inclusive π0 and ŋ production ine+e− annihilation at
Particle multiplicities in the continuum.
Particle multiplicities in the UPSILON (1S).
Inclusive pi0 spectra in the continuum.
Data on the multiplicity and inclusive spectra of γ produced in inelastic pNe20 and pN interactions at 300 GeV are presented. The γ multiplicity for pNe20 interactions is 11.43±0.23, and the ratio of 〈nγ〉 for pNe20 and pN interactions is 1.48±0.05. From an analysis of the effective-mass distributions, 〈nπ0〉=4.91±0.52 and 〈nη0〉=1.47±0.33. In fact, η0 production is much higher in pNe20 interactions [R(η0π0)=0.66±0.12 for np≥21] than in pN interactions [R(η0π0)=0.06±0.04]. No η′(958) signal is seen. Strong correlations between 〈nγ〉 and np, the number of secondary protons, are observed, primarily from the central and target fragmentation regions. Inclusive y* and p⊥ spectra are analyzed and evidence for low-energy cascading and rescattering of fast particles in the projectile fragmentation region is discussed. The data are compared to the predictions of the additive quark model, the Lund model, and the dual parton model.
No description provided.
GAMMA-MULTIPLICITY FOR (PROTON-NUCLEON)-INTERACTION WAS OBTAINED AT AVERAGING OVER (PP) AND (PN) EVENTS, AND THEN WAS USED IN THE PRESENTED RATIO.
No description provided.
Data on multiplicity, correlations, and inclusive spectra of KS0 mesons and Λ0(Λ¯0) hyperons produced with xF≤0 in inelastic pNe20 and pN interactions at 300 GeV are presented and compared. The inclusive cross sections for pNe20 (pN) with xF≤0 are 61.1±2.8 mb (3.34±0.64 mb) for KS0, 40.8±2.5 mb (1.89±0.29 mb) for Λ0, and 3.9±0.5 mb (0.31±0.08 mb) for Λ¯0. The multiplicity ratio for pNe20 and pN interactions is 1.58±0.16 for KS0, 1.95±0.23 for Λ0, and 1.12±0.43 for Λ¯0. We have observed the Σ0(1193) hyperon and measured the average multiplicity (nΣ0=0.049±0.027) for xF≤0. We have also observed the strange resonances K*(892), K*(1415), and Σ*(1385) with xF≤0 and measured the fraction of V0 coming from each resonance. Λ0 polarization for xF≤0 is measured and shows a decrease as p⊥ increases [pΛ(pNe20)≈−0.25 at p⊥=1.5 GeV/c], in agreement with other experiments which measure polarization in the region xF≫0. Since (43±7)% of the Λ0 are produced in Σ0→Λ0γ decays, the Λ0 polarization is significantly greater than the measured values. Experimental results are compared to predictions of the Lund model and the dual parton model of soft hadron-nucleus and hadron-nucleon interactions.
No description provided.
Axis error includes +- 0.0/0.0 contribution (NOT GIVEN).
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
ANTIPROTONS STOPPING IN THE PHOTOEMULSION.