A measurement is presented of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section as a function of the average transverse momentum,
Measurements of the ratio of 3jet to 2jet production as a function of the mean transverse momentum of the two leading jets. The errors in the tables are statistical only with the systematic errors quoted at the top of the table. The individual sources contributing to these systematic errors are shown in the following two tables. The statistcal correlations of the measured ratios between PT bins is given in the link above.
The different contributions to the Jet Energy Scale (JES) uncertainties as described in the CMS paper Phys.Rev.D87(2013)112002. The overall JES uncertainty (quadratic sum) from these is 1.245 %.
The different contributions to the unfolding procedure uncertainties as described in this paper. The overall unfolding uncertainty (quadratic sum) from these is 0.641 %.
We report a new measurement of dijet production by color-singlet exchange in pp¯ collisions at s=1.8TeV at the Fermilab Tevatron. In a sample of events with two jets of transverse energy ETjet>20GeV, pseudorapidity in the range 1.8<|ηjet|<3.5, and η1η2<0, we find that a fraction R=[1.13±0.12(stat)±0.11(syst)]% has a pseudorapidity gap within |η|<1 between the jets that can be attributed to color-singlet exchnage. The fraction R shows no significant dependence on ETjet or on the pseudorapidity separation between the jets.
Q=SS and Q=OS means same-side and opposite-side events.
An inclusive measurement of the average multiplicity of b b pairs from gluons, g b b , in hadronic Z 0 events collected by the DELPHI experiment at LEP, is presented. A counting technique, based on jet b -tagging in 4-jet events, has been used. Looking for secondary bottom production in events with production of any primary flavour, by requiring two b -tagged jets in well defined topological configurations, gave g b b = (0.21 ± 0.11 ( stat ) ± 0.09 ( syst ))% . This result was checked with a different method designed to select events with four b quarks in the final state. Agreement within the errors was found.
No description provided.
A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.
'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.