Transversity amplitudes and spin density matrix elements are determined for the process K − p → (π + π − ) s-wave ϵ 0 (1385). Predictions of the additive quark model and of duality diagrams are tested and found consistent with the data; this is the first information about the applicability of these models to processes where a scalar object is produced at the mesonic vertex.
No description provided.
Experimental results on the K L 0 p → K S 0 p reaction at 11 laboratory momenta between 300 and 800 MeV/ c are presented. The data are used to discriminate among the various sets of phase shifts for K + N scattering in the I = 0 state.
STATISTICAL ERRORS ONLY. CROSS SECTIONS ARE NORMALIZED RELATIVE TO THE PI+ LAMBDA EVENTS - SEE THE RECORD OF L. BERTANZA ET AL., NP B110, 1 (1976).
No description provided.
No description provided.
The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.
No description provided.
No description provided.
Results are presented for the quasi two-body hypercharge exchange reactions of the type using data from a high statistics bubble chamber experiment. Total and differential cross sections and the momentum transfer dependence of the meson and hyperon resonance single density matrix elements are discussed. Amplitude analyses are performed for the first two reactions. The results are compared with quark model and duality predictions and with those from other related reactions.
No description provided.
No description provided.
No description provided.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
A regeneration experiment exploring KS−KL interference in the decay modes KS,L→π+π− and KS,L→π±l∓ν (l=μ or e) has been performed at the Brookhaven National Laboratory alternating-gradient synchrotron. The regeneration phases in carbon obtained from the time-dependent charge asymmetry of the Ke3 and Kμ3 modes are in good agreement and yield a combined result ϕf≡argi[f(0)−f(0)]=−40.9°±2.6° at the average K0 momentum of 7.5 GeV/c.
FROM KE3 DECAY MODE.
FROM KMU3 DECAY MODE.
The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.
No description provided.
NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.
Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.
No description provided.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.