Measurement of the polarization of the recoil proton from the photoproduction of neutral pions on hydrogen in the region of the first resonance. I

Althoff, K.H. ; Kramp, K. ; Matthay, H. ; et al.
Z.Phys. 194 (1966) 135-143, 1966.
Inspire Record 1385256 DOI 10.17182/hepdata.16667

The polarization of the recoil proton from the reaction 7+p--->~pi0+p has been measured using liquid helium as polarization analyser. The photon energy has been varied between 250 and 360 MeV, the pion angle (CM) between 58 and 100.

1 data table

No description provided.


Measurement of the angular distribution of the polarization of the recoil proton from the photoproduction of neutral pions on hydrogen at a photon energy of 360 MeV. II

Althoff, K.H. ; Kramp, K. ; Matthay, H. ; et al.
Z.Phys. 194 (1966) 144-155, 1966.
Inspire Record 1385255 DOI 10.17182/hepdata.16697

The angular distribution of the polarization of the recoil protons from the reactionγ+p→π 0+p has been measured at a photon energy of 360 MeV and at pion CM angles of 58°, 75°, 96° and 105°. The polarization of the protons has been determined by the left to right ratio in scattering on a helium gas target. The trajectory of each scattered proton has been measured by a system of spark chambers.

1 data table

No description provided.


Measurement of the beam asymmetry $\Sigma$ in $\pi^°\eta$ production off the proton with the CBELSA/TAPS experiment

The CBELSA collaboration Gutz, E. ; Sokhoyan, V. ; van Pee, H. ; et al.
Eur.Phys.J.A 35 (2008) 291-293, 2008.
Inspire Record 788569 DOI 10.17182/hepdata.54889

In photoproduction experiments, a large number of final states yielding various resonance contributions are accessible. To extract resonance parameters via partial-wave analysis not only the measurement of differential cross-sections is necessary, but also the determination of polarization observables. At the electron accelerator ELSA (Bonn) the coherent bremsstrahlung method was used to generate a linearly polarized photon beam. Using the CBELSA/TAPS detector setup, the beam asymmetry Σ in the reaction γp → pπ 0 η was determined as a function of various masses and angles for photon energies between 970MeV and 1650MeV.

12 data tables

Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 0.970 to 1.200 GeV.

Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.200 to 1.450 GeV.

Measured beam asymmetry as a function of the cosine of the scattered proton angle for beam energies 1.450 to 1.650 GeV.

More…

Separated structure functions for the exclusive electroproduction of K+ Lambda and K+ Sigma0 final states.

The CLAS collaboration Ambrozewicz, P. ; Carman, D.S. ; Feuerbach, R.J. ; et al.
Phys.Rev.C 75 (2007) 045203, 2007.
Inspire Record 732363 DOI 10.17182/hepdata.4994

We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.

531 data tables

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.

Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.

More…

Differential cross section and photon beam asymmetry for the gamma(pol.) n --> K+ Sigma- reaction at e(gamma) = 1.5-GeV - 2.4-GeV.

Kohri, H. ; Ahn, D.S. ; Ahn, J.K. ; et al.
Phys.Rev.Lett. 97 (2006) 082003, 2006.
Inspire Record 709901 DOI 10.17182/hepdata.41825

Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma=1.5-2.4 GeV at 0.6<cosTheta<1. The cross section ratio of sigma(K+Sigma-)/sigma(K+Sigma0), expected to be 2 on the basis of the isospin 1/2 exchange, is found to be close to 1. For the K+Sigma- reaction, large positive asymmetries are observed indicating the dominance of the K*-exchange. A large difference between the asymmetries for the K+Sigma- and K+Sigma0 reactions can not be explained by simple theoretical considerations.

4 data tables

Differential cross section for GAMMA P --> K+ SIGMA0.. Errors are statistical only.

Photon beam asymmetry for GAMMA N --> K+ SIGMA-.. Errors are statistical only.

Photon beam asymmetry for GAMMA P --> K+ SIGMA0.. Errors are statistical only.

More…

The gamma(pol.) p --> K+ Lambda and gamma(pol.) p --> K+ Sigma0 reactions at forward angles with photon energies from 1.5-GeV to 2.4-GeV.

The LEPS collaboration Sumihama, M. ; Ahn, J.K. ; Akimune, H. ; et al.
Phys.Rev.C 73 (2006) 035214, 2006.
Inspire Record 701097 DOI 10.17182/hepdata.41824

Differential cross sections and photon beam asymmetries for the gamma p rightarrow K+ Lambda and gamma p rightarrow K+ Sigma0 reactions have been measured in the photon energy range from 1.5 GeV to 2.4 GeV and in the angular range from Theta_{cm} = 0 to 60 of the K+ scattering angle in the center of mass system at the SPring-8/LEPS facility. The photon beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS collaboration at cosTheta_{cm}<0.9 within the experimental uncertainties, but the discrepancy with the SAPHIR data for the K+Lambda reaction is large at cosTheta_{cm}>0.9. In the K+Lambda reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K+Lambda reaction, but not for the K+Sigma0 reaction.

14 data tables

Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.55 GeV (W=1.947 GeV).

Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.65 GeV (W=1.994 GeV).

Photon beam asymmetries for the two reactions as a function of CM angle for photon beam energy 1.75 GeV (W=2.041 GeV).

More…

Reaction K- p --> pi0 pi0 lambda from p(K-) = 514-MeV/c to 750-MeV/c.

Prakhov, S. ; Nefkens, B.M.K. ; Allgower, C.E. ; et al.
Phys.Rev.C 69 (2004) 042202, 2004.
Inspire Record 650074 DOI 10.17182/hepdata.25228

Reaction K−p→π0π0Λ was measured at eight incident K− momenta between 514 and 750MeV∕c using the Crystal Ball multiphoton spectrometer. The reaction dynamics are displayed in total cross sections, Dalitz plots, invariant-mass spectra, production angular distributions, and the Λ polarization. The π0π0Λ production is dominated by the π0Σ0(1385) intermediate state; no trace of other light Σ∗ states is observed, and the role of the f0(600) meson appears to be insignificant. A striking similarity is seen between K−p→π0π0Λ and π−p→π0π0n; this can be understood as a consequence of dynamical flavor symmetry.

5 data tables

Measured cross section. Statistical errors only.

Differential cross section for the di-pion system in the c.m. system for incident momenta 514 to 629 MeV.

Differential cross section for the di-pion system in the c.m. system for incident momenta 659 to 750 MeV.

More…

Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

Glander, K.H. ; Barth, J. ; Braun, W. ; et al.
Eur.Phys.J.A 19 (2004) 251-273, 2004.
Inspire Record 626695 DOI 10.17182/hepdata.51677

The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.

24 data tables

Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 0.9 to 1.0 GeV.

Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.0 to 1.2 GeV.

Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.2 to 1.4 GeV.

More…

Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)Sigma0 reactions at E(gamma) = 1.5-GeV - 2.4-GeV.

The LEPS collaboration Zegers, R.G.T. ; Sumihama, M. ; Ahn, D.S. ; et al.
Phys.Rev.Lett. 91 (2003) 092001, 2003.
Inspire Record 613016 DOI 10.17182/hepdata.31708

Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at SPring-8 (LEPS). The observed asymmetries are positive and gradually increase with rising photon energy. The data are not consistent with theoretical predictions based on tree-level effective Lagrangian approaches. Including the new results in the development of the models is, therefore, crucial for understanding the reaction mechanism and to test the presence of baryon resonances which are predicted in quark models but are sofar undiscovered.

18 data tables

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.5 to 1.6.

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.6 to 1.7.

Measured beam asymmetries for the reaction GAMMA P --> K+ LAMBDA for beam energy 1.7 to 1.8.

More…

Measurement of the Antilambda polarization in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 605 (2001) 3-14, 2001.
Inspire Record 554759 DOI 10.17182/hepdata.48928

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

2 data tables

Lambdabar polarization in regions of Feynman X (XL).

Lambdabar polarization in regions of the Bjorken scaling variable X.