The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The considerable polarization of hyperons produced at high xF has been known for a long time and has been interpreted with various theoretical models in terms of the constituents' spin. Recently, the analyzing power in inclusive Λ0 hyperon production has also been measured using the 200GeV/c Fermilab polarized proton beam. The covered kinematic range is 0.2≤xF≤1.0 and 0.1≤pT≤1.5GeV/c. The data indicate a negative asymmetry at large xF and moderate pT. These results can further test the current ideas on the underlying mechanisms for hyperon polarization.
No description provided.
No description provided.
No description provided.
The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.
No description provided.
None
No description provided.
The tensor analyzing power T20 for the reaction d↑+12C→p(0°)+X has been measured in the region of proton internal momenta k in light-cone dynamics up to 1 GeV/ c. Measurements have been carried out at Dubna Synchrophasotron with polarized deuteron beam at deuteron momenta up to 9 GeV/ c. When k increases the experimental values of T20 have a tendency to approach the value ( −0.3) obtained by the calculation based on the reduced nuclear amplitude method in which the quark degrees of freedom are taken into account.
The momentum K, called momentum in light-cone dynamics, is expressed by thefollowing formula k**2=mt**2/(4*alpha*(1-alpha))-m**2,with mt**2=kt**2+m**2 wh ere kt is the proton transverse momentum.The light-cone variable alpha is the p art of the deuteron momentum carried by the proton in the infinite momentum frameand is expressed by the formula alpha=(Ep+Pp)/(Ed+Pd).
The transverse-longitudinal asymmetry ATL′ in He→3(e→, e′) quasielastic scattering at momentum transfer Q2=0.14 (GeV/c)2 has been measured to be 1.52 ± 0.55(stat) ± 0.15(syst)%. The plane wave impulse approximation (PWIA) prediction for this measurement ranges from 2.1% to 2.9%, where the variation is due to uncertainty in the initial state wave function, nucleon form factors, and off-shell prescription. The data may suggest a suppression with respect to the PWIA, which has also been observed for the unpolarized longitudinal response function.
QUASIELASTIC REACTION.
We report measurements of spin correlations and analyzing powers in He→3(p→, 2p) and He→3(p→, pn) quasielastic scattering as a function of momentum transfer and missing momentum at 197 MeV using a polarized internal target at the Indiana University Cyclotron Facility Cooler Ring. At sufficiently high momentum transfer we find He→3(p→, pn) spin observables are in good agreement with free p−n scattering observables, and therefore that He→3 can serve as a good polarized neutron target. The extracted polarizations of nucleons in He→3 at low missing momentum are consistent with Faddeev calculations.
QUASIELASTIC SCATTERING.
We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}
Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.
A new measurement of the differential cross section and of the analysing power A 0 n of the charge-exchange reaction p − p → n − n at 875 MeV/ c is presented. The A 0 n data cover the entire angular range and constitute a considerable improvement over previously published data, both in the forward and in the backward hemisphere. The cross-section data cover only the backward region, but are unique at this energy. A careful study of the long-term drifts of the apparatus has allowed to fully exploit the good statistics of the data.
Forward hemisphere measurement. Additional systematic error of 4 pct due to target polarization uncertainty.
Backward hemisphere measurement. Additional systematic error of 15 pct.
Differential cross section in the backward hemisphere. Additional systematic error of 15 pct.
The π0 inclusive and semi-inclusive, single-spin asymmetries have been measured using transversely polarized, 200-GeV/c proton and antiproton beams colliding with an unpolarized hydrogen target. The measured asymmetries are consistent with zero within the experimental uncertainties for the kinematic region -0.15<xF<+0.15 and 1<pT<4.5 GeV/c. Improvements in the data analysis showed that our earlier large asymmetries at pT≳3 GeV/c were not correct. These data indicate that PQCD expectations seem confirmed and the higher-twist contribution to the single-spin asymmetry in π0 production at xF=0 is not large. Additional evidence for such a conclusion comes from the measurement of a semi-inclusive π0 asymmetry, where associated charged particles are detected opposite to the π0 azimuthal direction. This experiment also provides high-statistics data on the inclusive π0 cross sections for pp and p¯p collisions at √s≊19.4 GeV. © 1996 The American Physical Society.
No description provided.
Pure inclusive reaction.
Semi-inclusive reaction where at least on associated charged particle is produced at (180+-30) degrees relative to the pi0.